#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.VehicleRouting.Encodings.General;
using HeuristicLab.Problems.VehicleRouting.Interfaces;
namespace HeuristicLab.Problems.VehicleRouting.Encodings.GVR {
[Item("GVRCrossover", "The GVR crossover operation. It is implemented as described in Pereira, F.B. et al (2002). GVR: a New Genetic Representation for the Vehicle Routing Problem. AICS 2002, LNAI 2464, pp. 95-102.")]
[StorableClass]
public sealed class GVRCrossover : VRPCrossover, IStochasticOperator, IGVROperator {
public ILookupParameter RandomParameter {
get { return (LookupParameter)Parameters["Random"]; }
}
[StorableConstructor]
private GVRCrossover(bool deserializing) : base(deserializing) { }
public GVRCrossover() {
Parameters.Add(new LookupParameter("Random", "The pseudo random number generator which should be used for stochastic manipulation operators."));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new GVRCrossover(this, cloner);
}
private GVRCrossover(GVRCrossover original, Cloner cloner)
: base(original, cloner) {
}
private GVREncoding Crossover(IRandom random, GVREncoding parent1, GVREncoding parent2) {
GVREncoding child = parent1.Clone() as GVREncoding;
Tour tour = parent2.Tours[random.Next(parent2.Tours.Count)];
int breakPoint1 = random.Next(tour.Stops.Count);
int length = random.Next(1, tour.Stops.Count - breakPoint1 + 1);
List subroute = tour.Stops.GetRange(breakPoint1, length);
//remove duplicates
List toBeRemoved = new List();
foreach (Tour route in child.Tours) {
foreach (int city in subroute) {
route.Stops.Remove(city);
}
if (route.Stops.Count == 0)
toBeRemoved.Add(route);
}
foreach (Tour route in toBeRemoved) {
child.Tours.Remove(route);
}
//choose nearest customer
double minDistance = -1;
int customer = -1;
for (int i = 1; i <= ProblemInstance.Cities.Value; i++) {
if (!subroute.Contains(i)) {
double distance = ProblemInstance.GetDistance(subroute[0], i, child);
if (customer == -1 || distance < minDistance) {
customer = i;
minDistance = distance;
}
}
}
//insert
if (customer != -1) {
Tour newTour;
int newPosition;
child.FindCustomer(customer, out newTour, out newPosition);
newTour.Stops.InsertRange(newPosition + 1, subroute);
} else {
//special case -> only one tour, whole tour has been chosen as subroute
child = parent1.Clone() as GVREncoding;
}
return child;
}
public override IOperation InstrumentedApply() {
ItemArray parents = new ItemArray(ParentsParameter.ActualValue.Length);
for (int i = 0; i < ParentsParameter.ActualValue.Length; i++) {
IVRPEncoding solution = ParentsParameter.ActualValue[i];
if (!(solution is GVREncoding)) {
parents[i] = GVREncoding.ConvertFrom(solution, ProblemInstance);
} else {
parents[i] = solution;
}
}
ParentsParameter.ActualValue = parents;
ChildParameter.ActualValue = Crossover(RandomParameter.ActualValue, parents[0] as GVREncoding, parents[1] as GVREncoding);
return base.InstrumentedApply();
}
}
}