#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
[StorableClass]
[Item("SymbolicRegressionSolutionImpactValuesCalculator", "Calculate symbolic expression tree node impact values for regression problems.")]
public class SymbolicRegressionSolutionImpactValuesCalculator : SymbolicDataAnalysisSolutionImpactValuesCalculator {
public SymbolicRegressionSolutionImpactValuesCalculator() { }
protected SymbolicRegressionSolutionImpactValuesCalculator(SymbolicRegressionSolutionImpactValuesCalculator original, Cloner cloner)
: base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicRegressionSolutionImpactValuesCalculator(this, cloner);
}
[StorableConstructor]
protected SymbolicRegressionSolutionImpactValuesCalculator(bool deserializing) : base(deserializing) { }
protected override double CalculateQualityForImpacts(ISymbolicDataAnalysisModel model, IDataAnalysisProblemData problemData, IEnumerable rows) {
var regressionModel = (ISymbolicRegressionModel)model;
var regressionProblemData = (IRegressionProblemData)problemData;
var estimatedValues = regressionModel.GetEstimatedValues(problemData.Dataset, rows); // also bounds the values
var targetValues = problemData.Dataset.GetDoubleValues(regressionProblemData.TargetVariable, rows);
OnlineCalculatorError errorState;
var r = OnlinePearsonsRCalculator.Calculate(targetValues, estimatedValues, out errorState);
var quality = r * r;
if (errorState != OnlineCalculatorError.None) return double.NaN;
return quality;
}
}
}