#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.PluginInfrastructure; namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding { [NonDiscoverableType] [StorableClass] [Item("ProbabilisticTreeCreator", "An operator that creates new symbolic expression trees with uniformly distributed length")] public class ProbabilisticTreeCreator : SymbolicExpressionTreeCreator, ISymbolicExpressionTreeSizeConstraintOperator, ISymbolicExpressionTreeGrammarBasedOperator { private const int MAX_TRIES = 100; [StorableConstructor] protected ProbabilisticTreeCreator(bool deserializing) : base(deserializing) { } protected ProbabilisticTreeCreator(ProbabilisticTreeCreator original, Cloner cloner) : base(original, cloner) { } public ProbabilisticTreeCreator() : base() { } public override IDeepCloneable Clone(Cloner cloner) { return new ProbabilisticTreeCreator(this, cloner); } protected override ISymbolicExpressionTree Create(IRandom random) { return Create(random, ClonedSymbolicExpressionTreeGrammarParameter.ActualValue, MaximumSymbolicExpressionTreeLengthParameter.ActualValue.Value, MaximumSymbolicExpressionTreeDepthParameter.ActualValue.Value); } public override ISymbolicExpressionTree CreateTree(IRandom random, ISymbolicExpressionGrammar grammar, int maxTreeLength, int maxTreeDepth) { return Create(random, grammar, maxTreeLength, maxTreeDepth); } public static ISymbolicExpressionTree Create(IRandom random, ISymbolicExpressionGrammar grammar, int maxTreeLength, int maxTreeDepth) { SymbolicExpressionTree tree = new SymbolicExpressionTree(); var rootNode = (SymbolicExpressionTreeTopLevelNode)grammar.ProgramRootSymbol.CreateTreeNode(); if (rootNode.HasLocalParameters) rootNode.ResetLocalParameters(random); rootNode.SetGrammar(grammar.CreateExpressionTreeGrammar()); var startNode = (SymbolicExpressionTreeTopLevelNode)grammar.StartSymbol.CreateTreeNode(); if (startNode.HasLocalParameters) startNode.ResetLocalParameters(random); startNode.SetGrammar(grammar.CreateExpressionTreeGrammar()); rootNode.AddSubtree(startNode); PTC2(random, startNode, maxTreeLength, maxTreeDepth); tree.Root = rootNode; return tree; } public static ISymbolicExpressionTree CreateExpressionTree(IRandom random, ISymbolicExpressionGrammar grammar, int targetLength, int maxTreeDepth) { SymbolicExpressionTree tree = new SymbolicExpressionTree(); var rootNode = (SymbolicExpressionTreeTopLevelNode)grammar.ProgramRootSymbol.CreateTreeNode(); if (rootNode.HasLocalParameters) rootNode.ResetLocalParameters(random); rootNode.SetGrammar(grammar.CreateExpressionTreeGrammar()); var startNode = (SymbolicExpressionTreeTopLevelNode)grammar.StartSymbol.CreateTreeNode(); if (startNode.HasLocalParameters) startNode.ResetLocalParameters(random); startNode.SetGrammar(grammar.CreateExpressionTreeGrammar()); rootNode.AddSubtree(startNode); bool success = TryCreateFullTreeFromSeed(random, startNode, targetLength - 2, maxTreeDepth - 1); if (!success) throw new InvalidOperationException(string.Format("Could not create a tree with target length {0} and max depth {1}", targetLength, maxTreeDepth)); tree.Root = rootNode; return tree; } private class TreeExtensionPoint { public ISymbolicExpressionTreeNode Parent { get; set; } public int ChildIndex { get; set; } public int ExtensionPointDepth { get; set; } public int MaximumExtensionLength { get; set; } public int MinimumExtensionLength { get; set; } } public static void PTC2(IRandom random, ISymbolicExpressionTreeNode seedNode, int maxLength, int maxDepth) { // make sure it is possible to create a trees smaller than maxLength and maxDepth if (seedNode.Grammar.GetMinimumExpressionLength(seedNode.Symbol) > maxLength) throw new ArgumentException("Cannot create trees of length " + maxLength + " or shorter because of grammar constraints.", "maxLength"); if (seedNode.Grammar.GetMinimumExpressionDepth(seedNode.Symbol) > maxDepth) throw new ArgumentException("Cannot create trees of depth " + maxDepth + " or smaller because of grammar constraints.", "maxDepth"); // tree length is limited by the grammar and by the explicit size constraints int allowedMinLength = seedNode.Grammar.GetMinimumExpressionLength(seedNode.Symbol); int allowedMaxLength = Math.Min(maxLength, seedNode.Grammar.GetMaximumExpressionLength(seedNode.Symbol, maxDepth)); int tries = 0; while (tries++ < MAX_TRIES) { // select a target tree length uniformly in the possible range (as determined by explicit limits and limits of the grammar) int targetTreeLength; targetTreeLength = random.Next(allowedMinLength, allowedMaxLength + 1); if (targetTreeLength <= 1 || maxDepth <= 1) return; bool success = TryCreateFullTreeFromSeed(random, seedNode, targetTreeLength - 1, maxDepth - 1); // if successful => check constraints and return the tree if everything looks ok if (success && seedNode.GetLength() <= maxLength && seedNode.GetDepth() <= maxDepth) { return; } else { // clean seedNode while (seedNode.Subtrees.Any()) seedNode.RemoveSubtree(0); } // try a different length MAX_TRIES times } throw new ArgumentException("Couldn't create a random valid tree."); } private static bool TryCreateFullTreeFromSeed(IRandom random, ISymbolicExpressionTreeNode root, int targetLength, int maxDepth) { List extensionPoints = new List(); int currentLength = 0; int actualArity = SampleArity(random, root, targetLength, maxDepth); if (actualArity < 0) return false; for (int i = 0; i < actualArity; i++) { // insert a dummy sub-tree and add the pending extension to the list var dummy = new SymbolicExpressionTreeNode(); root.AddSubtree(dummy); var x = new TreeExtensionPoint { Parent = root, ChildIndex = i, ExtensionPointDepth = 0 }; FillExtensionLengths(x, maxDepth); extensionPoints.Add(x); } //necessary to use long data type as the extension point length could be int.MaxValue long minExtensionPointsLength = extensionPoints.Select(x => (long)x.MinimumExtensionLength).Sum(); long maxExtensionPointsLength = extensionPoints.Select(x => (long)x.MaximumExtensionLength).Sum(); // while there are pending extension points and we have not reached the limit of adding new extension points while (extensionPoints.Count > 0 && minExtensionPointsLength + currentLength <= targetLength) { int randomIndex = random.Next(extensionPoints.Count); TreeExtensionPoint nextExtension = extensionPoints[randomIndex]; extensionPoints.RemoveAt(randomIndex); ISymbolicExpressionTreeNode parent = nextExtension.Parent; int argumentIndex = nextExtension.ChildIndex; int extensionDepth = nextExtension.ExtensionPointDepth; if (parent.Grammar.GetMinimumExpressionDepth(parent.Symbol) > maxDepth - extensionDepth) { ReplaceWithMinimalTree(random, root, parent, argumentIndex); int insertedTreeLength = parent.GetSubtree(argumentIndex).GetLength(); currentLength += insertedTreeLength; minExtensionPointsLength -= insertedTreeLength; maxExtensionPointsLength -= insertedTreeLength; } else { //remove currently chosen extension point from calculation minExtensionPointsLength -= nextExtension.MinimumExtensionLength; maxExtensionPointsLength -= nextExtension.MaximumExtensionLength; var symbols = from s in parent.Grammar.GetAllowedChildSymbols(parent.Symbol, argumentIndex) where s.InitialFrequency > 0.0 where parent.Grammar.GetMinimumExpressionDepth(s) <= maxDepth - extensionDepth where parent.Grammar.GetMinimumExpressionLength(s) <= targetLength - currentLength - minExtensionPointsLength select s; if (maxExtensionPointsLength < targetLength - currentLength) symbols = from s in symbols where parent.Grammar.GetMaximumExpressionLength(s, maxDepth - extensionDepth) >= targetLength - currentLength - maxExtensionPointsLength select s; var allowedSymbols = symbols.ToList(); if (allowedSymbols.Count == 0) return false; var weights = allowedSymbols.Select(x => x.InitialFrequency).ToList(); #pragma warning disable 612, 618 var selectedSymbol = allowedSymbols.SelectRandom(weights, random); #pragma warning restore 612, 618 ISymbolicExpressionTreeNode newTree = selectedSymbol.CreateTreeNode(); if (newTree.HasLocalParameters) newTree.ResetLocalParameters(random); parent.RemoveSubtree(argumentIndex); parent.InsertSubtree(argumentIndex, newTree); var topLevelNode = newTree as SymbolicExpressionTreeTopLevelNode; if (topLevelNode != null) topLevelNode.SetGrammar((ISymbolicExpressionTreeGrammar)root.Grammar.Clone()); currentLength++; actualArity = SampleArity(random, newTree, targetLength - currentLength, maxDepth - extensionDepth); if (actualArity < 0) return false; for (int i = 0; i < actualArity; i++) { // insert a dummy sub-tree and add the pending extension to the list var dummy = new SymbolicExpressionTreeNode(); newTree.AddSubtree(dummy); var x = new TreeExtensionPoint { Parent = newTree, ChildIndex = i, ExtensionPointDepth = extensionDepth + 1 }; FillExtensionLengths(x, maxDepth); extensionPoints.Add(x); maxExtensionPointsLength += x.MaximumExtensionLength; minExtensionPointsLength += x.MinimumExtensionLength; } } } // fill all pending extension points while (extensionPoints.Count > 0) { int randomIndex = random.Next(extensionPoints.Count); TreeExtensionPoint nextExtension = extensionPoints[randomIndex]; extensionPoints.RemoveAt(randomIndex); ISymbolicExpressionTreeNode parent = nextExtension.Parent; int a = nextExtension.ChildIndex; ReplaceWithMinimalTree(random, root, parent, a); } return true; } private static void ReplaceWithMinimalTree(IRandom random, ISymbolicExpressionTreeNode root, ISymbolicExpressionTreeNode parent, int childIndex) { // determine possible symbols that will lead to the smallest possible tree var possibleSymbols = (from s in parent.Grammar.GetAllowedChildSymbols(parent.Symbol, childIndex) where s.InitialFrequency > 0.0 group s by parent.Grammar.GetMinimumExpressionLength(s) into g orderby g.Key select g).First().ToList(); var weights = possibleSymbols.Select(x => x.InitialFrequency).ToList(); #pragma warning disable 612, 618 var selectedSymbol = possibleSymbols.SelectRandom(weights, random); #pragma warning restore 612, 618 var tree = selectedSymbol.CreateTreeNode(); if (tree.HasLocalParameters) tree.ResetLocalParameters(random); parent.RemoveSubtree(childIndex); parent.InsertSubtree(childIndex, tree); var topLevelNode = tree as SymbolicExpressionTreeTopLevelNode; if (topLevelNode != null) topLevelNode.SetGrammar((ISymbolicExpressionTreeGrammar)root.Grammar.Clone()); for (int i = 0; i < tree.Grammar.GetMinimumSubtreeCount(tree.Symbol); i++) { // insert a dummy sub-tree and add the pending extension to the list var dummy = new SymbolicExpressionTreeNode(); tree.AddSubtree(dummy); // replace the just inserted dummy by recursive application ReplaceWithMinimalTree(random, root, tree, i); } } private static void FillExtensionLengths(TreeExtensionPoint extension, int maxDepth) { var grammar = extension.Parent.Grammar; int maxLength = int.MinValue; int minLength = int.MaxValue; foreach (ISymbol s in grammar.GetAllowedChildSymbols(extension.Parent.Symbol, extension.ChildIndex)) { if (s.InitialFrequency > 0.0) { int max = grammar.GetMaximumExpressionLength(s, maxDepth - extension.ExtensionPointDepth); maxLength = Math.Max(maxLength, max); int min = grammar.GetMinimumExpressionLength(s); minLength = Math.Min(minLength, min); } } extension.MaximumExtensionLength = maxLength; extension.MinimumExtensionLength = minLength; } private static int SampleArity(IRandom random, ISymbolicExpressionTreeNode node, int targetLength, int maxDepth) { // select actualArity randomly with the constraint that the sub-trees in the minimal arity can become large enough int minArity = node.Grammar.GetMinimumSubtreeCount(node.Symbol); int maxArity = node.Grammar.GetMaximumSubtreeCount(node.Symbol); if (maxArity > targetLength) { maxArity = targetLength; } if (minArity == maxArity) return minArity; // the min number of sub-trees has to be set to a value that is large enough so that the largest possible tree is at least tree length // if 1..3 trees are possible and the largest possible first sub-tree is smaller larger than the target length then minArity should be at least 2 long aggregatedLongestExpressionLength = 0; for (int i = 0; i < maxArity; i++) { aggregatedLongestExpressionLength += (from s in node.Grammar.GetAllowedChildSymbols(node.Symbol, i) where s.InitialFrequency > 0.0 select node.Grammar.GetMaximumExpressionLength(s, maxDepth)).Max(); if (i > minArity && aggregatedLongestExpressionLength < targetLength) minArity = i + 1; else break; } // the max number of sub-trees has to be set to a value that is small enough so that the smallest possible tree is at most tree length // if 1..3 trees are possible and the smallest possible first sub-tree is already larger than the target length then maxArity should be at most 0 long aggregatedShortestExpressionLength = 0; for (int i = 0; i < maxArity; i++) { aggregatedShortestExpressionLength += (from s in node.Grammar.GetAllowedChildSymbols(node.Symbol, i) where s.InitialFrequency > 0.0 select node.Grammar.GetMinimumExpressionLength(s)).Min(); if (aggregatedShortestExpressionLength > targetLength) { maxArity = i; break; } } if (minArity > maxArity) return -1; return random.Next(minArity, maxArity + 1); } } }