#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using static HeuristicLab.Problems.DataAnalysis.Symbolic.SymbolicExpressionHashExtensions; namespace HeuristicLab.Problems.DataAnalysis.Symbolic { public static class SymbolicExpressionTreeHash { private static readonly Addition add = new Addition(); private static readonly Subtraction sub = new Subtraction(); private static readonly Multiplication mul = new Multiplication(); private static readonly Division div = new Division(); private static readonly Logarithm log = new Logarithm(); private static readonly Exponential exp = new Exponential(); private static readonly Sine sin = new Sine(); private static readonly Cosine cos = new Cosine(); private static readonly Constant constant = new Constant(); private static readonly ISymbolicExpressionTreeNodeComparer comparer = new SymbolicExpressionTreeNodeComparer(); public static ulong ComputeHash(this ISymbolicExpressionTree tree) { return ComputeHash(tree.Root.GetSubtree(0).GetSubtree(0)); } public static double ComputeSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2, bool simplify = false) { return ComputeSimilarity(t1.Root.GetSubtree(0).GetSubtree(0), t2.Root.GetSubtree(0).GetSubtree(0), simplify); } public static double ComputeSimilarity(ISymbolicExpressionTreeNode t1, ISymbolicExpressionTreeNode t2, bool simplify = false) { HashNode[] lhs; HashNode[] rhs; ulong hashFunction(byte[] input) => HashUtil.DJBHash(input); if (simplify) { lhs = t1.MakeNodes().Simplify(hashFunction); rhs = t2.MakeNodes().Simplify(hashFunction); } else { lhs = t1.MakeNodes().Sort(hashFunction); // sort calculates hash values rhs = t2.MakeNodes().Sort(hashFunction); } var lh = lhs.Select(x => x.CalculatedHashValue).ToArray(); var rh = rhs.Select(x => x.CalculatedHashValue).ToArray(); Array.Sort(lh); Array.Sort(rh); return ComputeSimilarity(lh, rh); } // this will only work if lh and rh are sorted private static double ComputeSimilarity(ulong[] lh, ulong[] rh) { double count = 0; for (int i = 0, j = 0; i < lh.Length && j < rh.Length;) { var h1 = lh[i]; var h2 = rh[j]; if (h1 == h2) { ++count; ++i; ++j; } else if (h1 < h2) { ++i; } else if (h1 > h2) { ++j; } } return 2d * count / (lh.Length + rh.Length); } public static double ComputeAverageSimilarity(ISymbolicExpressionTree[] trees, bool simplify = false, bool strict = false) { var total = (double)trees.Length * (trees.Length - 1) / 2; double avg = 0; var hashes = new ulong[trees.Length][]; // build hash arrays for (int i = 0; i < trees.Length; ++i) { var nodes = trees[i].MakeNodes(strict); hashes[i] = (simplify ? nodes.Simplify(HashUtil.DJBHash) : nodes.Sort(HashUtil.DJBHash)).Select(x => x.CalculatedHashValue).ToArray(); Array.Sort(hashes[i]); } // compute similarity matrix for (int i = 0; i < trees.Length - 1; ++i) { for (int j = i + 1; j < trees.Length; ++j) { avg += ComputeSimilarity(hashes[i], hashes[j]); } } return avg / total; } public static double[,] ComputeSimilarityMatrix(ISymbolicExpressionTree[] trees, bool simplify = false, bool strict = false) { var sim = new double[trees.Length, trees.Length]; var hashes = new ulong[trees.Length][]; // build hash arrays for (int i = 0; i < trees.Length; ++i) { var nodes = trees[i].MakeNodes(strict); hashes[i] = (simplify ? nodes.Simplify(HashUtil.DJBHash) : nodes.Sort(HashUtil.DJBHash)).Select(x => x.CalculatedHashValue).ToArray(); Array.Sort(hashes[i]); } // compute similarity matrix for (int i = 0; i < trees.Length - 1; ++i) { for (int j = i + 1; j < trees.Length; ++j) { sim[i, j] = sim[j, i] = ComputeSimilarity(hashes[i], hashes[j]); } } return sim; } public static ulong ComputeHash(this ISymbolicExpressionTreeNode treeNode, bool strict = false) { ulong hashFunction(byte[] input) => HashUtil.JSHash(input); var hashNodes = treeNode.MakeNodes(strict); var simplified = hashNodes.Simplify(hashFunction); return simplified.Last().CalculatedHashValue; } public static HashNode ToHashNode(this ISymbolicExpressionTreeNode node, bool strict = false) { var symbol = node.Symbol; var name = symbol.Name; if (node is ConstantTreeNode constantNode) { name = strict ? constantNode.Value.ToString() : symbol.Name; } else if (node is VariableTreeNode variableNode) { name = strict ? variableNode.Weight.ToString() + variableNode.VariableName : variableNode.VariableName; } var hash = (ulong)name.GetHashCode(); var hashNode = new HashNode(comparer) { Data = node, Arity = node.SubtreeCount, Size = node.SubtreeCount, IsCommutative = node.Symbol is Addition || node.Symbol is Multiplication, Enabled = true, HashValue = hash, CalculatedHashValue = hash }; if (symbol is Addition) { hashNode.Simplify = SimplifyAddition; } else if (symbol is Multiplication) { hashNode.Simplify = SimplifyMultiplication; } else if (symbol is Division) { hashNode.Simplify = SimplifyDivision; } else if (symbol is Logarithm || symbol is Exponential || symbol is Sine || symbol is Cosine) { hashNode.Simplify = SimplifyUnaryNode; } else if (symbol is Subtraction) { hashNode.Simplify = SimplifyBinaryNode; } return hashNode; } public static HashNode[] MakeNodes(this ISymbolicExpressionTree tree, bool strict = false) { return MakeNodes(tree.Root.GetSubtree(0).GetSubtree(0), strict); } public static HashNode[] MakeNodes(this ISymbolicExpressionTreeNode node, bool strict = false) { return node.IterateNodesPostfix().Select(x => x.ToHashNode(strict)).ToArray().UpdateNodeSizes(); } #region parse a nodes array back into a tree public static ISymbolicExpressionTree ToTree(this HashNode[] nodes) { var root = new ProgramRootSymbol().CreateTreeNode(); var start = new StartSymbol().CreateTreeNode(); root.AddSubtree(start); start.AddSubtree(nodes.ToSubtree()); return new SymbolicExpressionTree(root); } public static ISymbolicExpressionTreeNode ToSubtree(this HashNode[] nodes) { var treeNodes = nodes.Select(x => x.Data.Symbol.CreateTreeNode()).ToArray(); for (int i = nodes.Length - 1; i >= 0; --i) { var node = nodes[i]; if (node.IsLeaf) { if (node.Data is VariableTreeNode variable) { var variableTreeNode = (VariableTreeNode)treeNodes[i]; variableTreeNode.VariableName = variable.VariableName; variableTreeNode.Weight = variable.Weight; } else if (node.Data is ConstantTreeNode @const) { var constantTreeNode = (ConstantTreeNode)treeNodes[i]; constantTreeNode.Value = @const.Value; } continue; } var treeNode = treeNodes[i]; foreach (var j in nodes.IterateChildren(i)) { treeNode.AddSubtree(treeNodes[j]); } } return treeNodes.Last(); } private static T CreateTreeNode(this ISymbol symbol) where T : class, ISymbolicExpressionTreeNode { return (T)symbol.CreateTreeNode(); } #endregion #region tree simplification // these simplification methods rely on the assumption that child nodes of the current node have already been simplified // (in other words simplification should be applied in a bottom-up fashion) public static ISymbolicExpressionTree Simplify(ISymbolicExpressionTree tree) { ulong hashFunction(byte[] bytes) => HashUtil.JSHash(bytes); var root = tree.Root.GetSubtree(0).GetSubtree(0); var nodes = root.MakeNodes(); var simplified = nodes.Simplify(hashFunction); return simplified.ToTree(); } public static void SimplifyAddition(ref HashNode[] nodes, int i) { // simplify additions of terms by eliminating terms with the same symbol and hash var children = nodes.IterateChildren(i); // we always assume the child nodes are sorted var curr = children[0]; var node = nodes[i]; foreach (var j in children.Skip(1)) { if (nodes[j] == nodes[curr]) { nodes.SetEnabled(j, false); node.Arity--; } else { curr = j; } } if (node.Arity == 1) { // if the arity is 1 we don't need the addition node at all node.Enabled = false; } } // simplify multiplications by reducing constants and div terms public static void SimplifyMultiplication(ref HashNode[] nodes, int i) { var node = nodes[i]; var children = nodes.IterateChildren(i); for (int j = 0; j < children.Length; ++j) { var c = children[j]; var child = nodes[c]; if (!child.Enabled) continue; var symbol = child.Data.Symbol; if (symbol is Constant) { for (int k = j + 1; k < children.Length; ++k) { var d = children[k]; if (nodes[d].Data.Symbol is Constant) { nodes[d].Enabled = false; node.Arity--; } else { break; } } } else if (symbol is Division) { var div = nodes[c]; var denominator = div.Arity == 1 ? nodes[c - 1] : // 1 / x is expressed as div(x) (with a single child) nodes[c - nodes[c - 1].Size - 2]; // assume division always has arity 1 or 2 foreach (var d in children) { if (nodes[d].Enabled && nodes[d] == denominator) { nodes[c].Enabled = nodes[d].Enabled = denominator.Enabled = false; node.Arity -= 2; // matching child + division node break; } } } if (node.Arity == 0) { // if everything is simplified this node becomes constant var constantTreeNode = constant.CreateTreeNode(); constantTreeNode.Value = 1; nodes[i] = constantTreeNode.ToHashNode(); } else if (node.Arity == 1) { // when i have only 1 arg left i can skip this node node.Enabled = false; } } } public static void SimplifyDivision(ref HashNode[] nodes, int i) { var node = nodes[i]; var children = nodes.IterateChildren(i); var tmp = nodes; if (children.All(x => tmp[x].Data.Symbol is Constant)) { var v = ((ConstantTreeNode)nodes[children.First()].Data).Value; if (node.Arity == 1) { v = 1 / v; } else if (node.Arity > 1) { foreach (var j in children.Skip(1)) { v /= ((ConstantTreeNode)nodes[j].Data).Value; } } var constantTreeNode = constant.CreateTreeNode(); constantTreeNode.Value = v; nodes[i] = constantTreeNode.ToHashNode(); return; } var nominator = nodes[children[0]]; foreach (var j in children.Skip(1)) { var denominator = nodes[j]; if (nominator == denominator) { // disable all the children of the division node (nominator and children + denominator and children) nominator.Enabled = denominator.Enabled = false; node.Arity -= 2; // nominator + denominator } if (node.Arity == 0) { var constantTreeNode = constant.CreateTreeNode(); constantTreeNode.Value = 1; // x / x = 1 nodes[i] = constantTreeNode.ToHashNode(); } } } public static void SimplifyUnaryNode(ref HashNode[] nodes, int i) { // check if the child of the unary node is a constant, then the whole node can be simplified var parent = nodes[i]; var child = nodes[i - 1]; var parentSymbol = parent.Data.Symbol; var childSymbol = child.Data.Symbol; if (childSymbol is Constant) { nodes[i].Enabled = false; } else if ((parentSymbol is Exponential && childSymbol is Logarithm) || (parentSymbol is Logarithm && childSymbol is Exponential)) { child.Enabled = parent.Enabled = false; } } public static void SimplifyBinaryNode(ref HashNode[] nodes, int i) { var children = nodes.IterateChildren(i); var tmp = nodes; if (children.All(x => tmp[x].Data.Symbol is Constant)) { foreach (var j in children) { nodes[j].Enabled = false; } nodes[i] = constant.CreateTreeNode().ToHashNode(); } } #endregion } }