#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Runtime.Serialization; using AutoDiff; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; namespace HeuristicLab.Problems.DataAnalysis.Symbolic { public class TreeToAutoDiffTermConverter { public delegate double ParametricFunction(double[] vars, double[] @params); public delegate Tuple ParametricFunctionGradient(double[] vars, double[] @params); #region helper class public class DataForVariable { public readonly string variableName; public readonly string variableValue; // for factor vars public readonly int lag; public DataForVariable(string varName, string varValue, int lag) { this.variableName = varName; this.variableValue = varValue; this.lag = lag; } public override bool Equals(object obj) { var other = obj as DataForVariable; if (other == null) return false; return other.variableName.Equals(this.variableName) && other.variableValue.Equals(this.variableValue) && other.lag == this.lag; } public override int GetHashCode() { return variableName.GetHashCode() ^ variableValue.GetHashCode() ^ lag; } } #endregion #region derivations of functions // create function factory for arctangent private static readonly Func arctan = UnaryFunc.Factory( eval: Math.Atan, diff: x => 1 / (1 + x * x)); private static readonly Func sin = UnaryFunc.Factory( eval: Math.Sin, diff: Math.Cos); private static readonly Func cos = UnaryFunc.Factory( eval: Math.Cos, diff: x => -Math.Sin(x)); private static readonly Func tan = UnaryFunc.Factory( eval: Math.Tan, diff: x => 1 + Math.Tan(x) * Math.Tan(x)); private static readonly Func erf = UnaryFunc.Factory( eval: alglib.errorfunction, diff: x => 2.0 * Math.Exp(-(x * x)) / Math.Sqrt(Math.PI)); private static readonly Func norm = UnaryFunc.Factory( eval: alglib.normaldistribution, diff: x => -(Math.Exp(-(x * x)) * Math.Sqrt(Math.Exp(x * x)) * x) / Math.Sqrt(2 * Math.PI)); private static readonly Func abs = UnaryFunc.Factory( eval: Math.Abs, diff: x => Math.Sign(x) ); #endregion public static bool TryConvertToAutoDiff(ISymbolicExpressionTree tree, bool makeVariableWeightsVariable, bool addLinearScalingTerms, out List parameters, out double[] initialConstants, out ParametricFunction func, out ParametricFunctionGradient func_grad) { // use a transformator object which holds the state (variable list, parameter list, ...) for recursive transformation of the tree var transformator = new TreeToAutoDiffTermConverter(makeVariableWeightsVariable, addLinearScalingTerms); AutoDiff.Term term; try { term = transformator.ConvertToAutoDiff(tree.Root.GetSubtree(0)); var parameterEntries = transformator.parameters.ToArray(); // guarantee same order for keys and values var compiledTerm = term.Compile(transformator.variables.ToArray(), parameterEntries.Select(kvp => kvp.Value).ToArray()); parameters = new List(parameterEntries.Select(kvp => kvp.Key)); initialConstants = transformator.initialConstants.ToArray(); func = (vars, @params) => compiledTerm.Evaluate(vars, @params); func_grad = (vars, @params) => compiledTerm.Differentiate(vars, @params); return true; } catch (ConversionException) { func = null; func_grad = null; parameters = null; initialConstants = null; } return false; } // state for recursive transformation of trees private readonly List initialConstants; private readonly Dictionary parameters; private readonly List variables; private readonly bool makeVariableWeightsVariable; private readonly bool addLinearScalingTerms; private TreeToAutoDiffTermConverter(bool makeVariableWeightsVariable, bool addLinearScalingTerms) { this.makeVariableWeightsVariable = makeVariableWeightsVariable; this.addLinearScalingTerms = addLinearScalingTerms; this.initialConstants = new List(); this.parameters = new Dictionary(); this.variables = new List(); } private AutoDiff.Term ConvertToAutoDiff(ISymbolicExpressionTreeNode node) { if (node.Symbol is Constant) { initialConstants.Add(((ConstantTreeNode)node).Value); var var = new AutoDiff.Variable(); variables.Add(var); return var; } if (node.Symbol is Variable || node.Symbol is BinaryFactorVariable) { var varNode = node as VariableTreeNodeBase; var factorVarNode = node as BinaryFactorVariableTreeNode; // factor variable values are only 0 or 1 and set in x accordingly var varValue = factorVarNode != null ? factorVarNode.VariableValue : string.Empty; var par = FindOrCreateParameter(parameters, varNode.VariableName, varValue); if (makeVariableWeightsVariable) { initialConstants.Add(varNode.Weight); var w = new AutoDiff.Variable(); variables.Add(w); return AutoDiff.TermBuilder.Product(w, par); } else { return varNode.Weight * par; } } if (node.Symbol is FactorVariable) { var factorVarNode = node as FactorVariableTreeNode; var products = new List(); foreach (var variableValue in factorVarNode.Symbol.GetVariableValues(factorVarNode.VariableName)) { var par = FindOrCreateParameter(parameters, factorVarNode.VariableName, variableValue); initialConstants.Add(factorVarNode.GetValue(variableValue)); var wVar = new AutoDiff.Variable(); variables.Add(wVar); products.Add(AutoDiff.TermBuilder.Product(wVar, par)); } return AutoDiff.TermBuilder.Sum(products); } if (node.Symbol is LaggedVariable) { var varNode = node as LaggedVariableTreeNode; var par = FindOrCreateParameter(parameters, varNode.VariableName, string.Empty, varNode.Lag); if (makeVariableWeightsVariable) { initialConstants.Add(varNode.Weight); var w = new AutoDiff.Variable(); variables.Add(w); return AutoDiff.TermBuilder.Product(w, par); } else { return varNode.Weight * par; } } if (node.Symbol is Addition) { List terms = new List(); foreach (var subTree in node.Subtrees) { terms.Add(ConvertToAutoDiff(subTree)); } return AutoDiff.TermBuilder.Sum(terms); } if (node.Symbol is Subtraction) { List terms = new List(); for (int i = 0; i < node.SubtreeCount; i++) { AutoDiff.Term t = ConvertToAutoDiff(node.GetSubtree(i)); if (i > 0) t = -t; terms.Add(t); } if (terms.Count == 1) return -terms[0]; else return AutoDiff.TermBuilder.Sum(terms); } if (node.Symbol is Multiplication) { List terms = new List(); foreach (var subTree in node.Subtrees) { terms.Add(ConvertToAutoDiff(subTree)); } if (terms.Count == 1) return terms[0]; else return terms.Aggregate((a, b) => new AutoDiff.Product(a, b)); } if (node.Symbol is Division) { List terms = new List(); foreach (var subTree in node.Subtrees) { terms.Add(ConvertToAutoDiff(subTree)); } if (terms.Count == 1) return 1.0 / terms[0]; else return terms.Aggregate((a, b) => new AutoDiff.Product(a, 1.0 / b)); } if (node.Symbol is Absolute) { var x1 = ConvertToAutoDiff(node.GetSubtree(0)); return abs(x1); } if (node.Symbol is AnalyticalQuotient) { var x1 = ConvertToAutoDiff(node.GetSubtree(0)); var x2 = ConvertToAutoDiff(node.GetSubtree(1)); return x1 / (TermBuilder.Power(1 + x2 * x2, 0.5)); } if (node.Symbol is Logarithm) { return AutoDiff.TermBuilder.Log( ConvertToAutoDiff(node.GetSubtree(0))); } if (node.Symbol is Exponential) { return AutoDiff.TermBuilder.Exp( ConvertToAutoDiff(node.GetSubtree(0))); } if (node.Symbol is Square) { return AutoDiff.TermBuilder.Power( ConvertToAutoDiff(node.GetSubtree(0)), 2.0); } if (node.Symbol is SquareRoot) { return AutoDiff.TermBuilder.Power( ConvertToAutoDiff(node.GetSubtree(0)), 0.5); } if (node.Symbol is Cube) { return AutoDiff.TermBuilder.Power( ConvertToAutoDiff(node.GetSubtree(0)), 3.0); } if (node.Symbol is CubeRoot) { return AutoDiff.TermBuilder.Power( ConvertToAutoDiff(node.GetSubtree(0)), 1.0/3.0); } if (node.Symbol is Sine) { return sin( ConvertToAutoDiff(node.GetSubtree(0))); } if (node.Symbol is Cosine) { return cos( ConvertToAutoDiff(node.GetSubtree(0))); } if (node.Symbol is Tangent) { return tan( ConvertToAutoDiff(node.GetSubtree(0))); } if (node.Symbol is Erf) { return erf( ConvertToAutoDiff(node.GetSubtree(0))); } if (node.Symbol is Norm) { return norm( ConvertToAutoDiff(node.GetSubtree(0))); } if (node.Symbol is StartSymbol) { if (addLinearScalingTerms) { // scaling variables α, β are given at the beginning of the parameter vector var alpha = new AutoDiff.Variable(); var beta = new AutoDiff.Variable(); variables.Add(beta); variables.Add(alpha); var t = ConvertToAutoDiff(node.GetSubtree(0)); return t * alpha + beta; } else return ConvertToAutoDiff(node.GetSubtree(0)); } throw new ConversionException(); } // for each factor variable value we need a parameter which represents a binary indicator for that variable & value combination // each binary indicator is only necessary once. So we only create a parameter if this combination is not yet available private static Term FindOrCreateParameter(Dictionary parameters, string varName, string varValue = "", int lag = 0) { var data = new DataForVariable(varName, varValue, lag); AutoDiff.Variable par = null; if (!parameters.TryGetValue(data, out par)) { // not found -> create new parameter and entries in names and values lists par = new AutoDiff.Variable(); parameters.Add(data, par); } return par; } public static bool IsCompatible(ISymbolicExpressionTree tree) { var containsUnknownSymbol = ( from n in tree.Root.GetSubtree(0).IterateNodesPrefix() where !(n.Symbol is Variable) && !(n.Symbol is BinaryFactorVariable) && !(n.Symbol is FactorVariable) && !(n.Symbol is LaggedVariable) && !(n.Symbol is Constant) && !(n.Symbol is Addition) && !(n.Symbol is Subtraction) && !(n.Symbol is Multiplication) && !(n.Symbol is Division) && !(n.Symbol is Logarithm) && !(n.Symbol is Exponential) && !(n.Symbol is SquareRoot) && !(n.Symbol is Square) && !(n.Symbol is Sine) && !(n.Symbol is Cosine) && !(n.Symbol is Tangent) && !(n.Symbol is Erf) && !(n.Symbol is Norm) && !(n.Symbol is StartSymbol) && !(n.Symbol is Absolute) && !(n.Symbol is AnalyticalQuotient) && !(n.Symbol is Cube) && !(n.Symbol is CubeRoot) select n).Any(); return !containsUnknownSymbol; } #region exception class [Serializable] public class ConversionException : Exception { public ConversionException() { } public ConversionException(string message) : base(message) { } public ConversionException(string message, Exception inner) : base(message, inner) { } protected ConversionException( SerializationInfo info, StreamingContext context) : base(info, context) { } } #endregion } }