#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding {
public static class SymbolicExpressionTreeLinearCompiler {
public static LinearInstruction[] Compile(ISymbolicExpressionTree tree, Func opCodeMapper) {
var root = tree.Root.GetSubtree(0).GetSubtree(0);
var code = new LinearInstruction[root.GetLength()];
if (root.SubtreeCount > ushort.MaxValue) throw new ArgumentException("Number of subtrees is too big (>65.535)");
code[0] = new LinearInstruction { dynamicNode = root, nArguments = (ushort)root.SubtreeCount, opCode = opCodeMapper(root) };
int c = 1, i = 0;
foreach (var node in root.IterateNodesBreadth()) {
for (int j = 0; j < node.SubtreeCount; ++j) {
var s = node.GetSubtree(j);
if (s.SubtreeCount > ushort.MaxValue) throw new ArgumentException("Number of subtrees is too big (>65.535)");
code[c + j] = new LinearInstruction { dynamicNode = s, nArguments = (ushort)s.SubtreeCount, opCode = opCodeMapper(s) };
}
code[i].childIndex = c;
c += node.SubtreeCount;
++i;
}
return code;
}
}
}