#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using HeuristicLab.Data;
using HeuristicLab.MainForm;
using HeuristicLab.Optimization;
namespace HeuristicLab.Problems.DataAnalysis.Views {
[View("Residual Analysis")]
[Content(typeof(IRegressionSolution))]
public sealed partial class RegressionSolutionResidualAnalysisView : DataAnalysisSolutionEvaluationView {
// names should be relatively save to prevent collisions with variable names in the dataset
private const string TargetLabel = "> Target";
private const string PredictionLabel = "> Prediction";
private const string ResidualLabel = "> Residual";
private const string AbsResidualLabel = "> Residual (abs.)";
private const string RelativeErrorLabel = "> Relative Error";
private const string AbsRelativeErrorLabel = "> Relative Error (abs.)";
private const string PartitionLabel = "> Partition";
public new IRegressionSolution Content {
get { return (IRegressionSolution)base.Content; }
set { base.Content = value; }
}
public RegressionSolutionResidualAnalysisView() : base() {
InitializeComponent();
}
#region events
protected override void RegisterContentEvents() {
base.RegisterContentEvents();
Content.ModelChanged += new EventHandler(Content_ModelChanged);
Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
}
protected override void DeregisterContentEvents() {
base.DeregisterContentEvents();
Content.ModelChanged -= new EventHandler(Content_ModelChanged);
Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
}
private void Content_ProblemDataChanged(object sender, EventArgs e) {
OnContentChanged();
}
private void Content_ModelChanged(object sender, EventArgs e) {
OnContentChanged();
}
protected override void OnContentChanged() {
base.OnContentChanged();
if (Content == null) {
bubbleChartView.Content = null;
} else {
UpdateBubbleChart();
}
}
private void UpdateBubbleChart() {
if (Content == null) return;
var selectedXAxis = bubbleChartView.SelectedXAxis;
var selectedYAxis = bubbleChartView.SelectedYAxis;
var problemData = Content.ProblemData;
var ds = problemData.Dataset;
var runs = new RunCollection();
// determine relevant variables (at least two different values)
var doubleVars = ds.DoubleVariables.Where(vn => ds.GetDoubleValues(vn).Max() > ds.GetDoubleValues(vn).Min()).ToArray();
var stringVars = ds.StringVariables.Where(vn => ds.GetStringValues(vn).Distinct().Skip(1).Any()).ToArray();
var dateTimeVars = ds.DateTimeVariables.Where(vn => ds.GetDateTimeValues(vn).Distinct().Skip(1).Any()).ToArray();
// produce training and test values separately as they might overlap (e.g. for ensembles)
var predictedValuesTrain = Content.EstimatedTrainingValues.ToArray();
int j = 0; // idx for predictedValues array
foreach (var i in problemData.TrainingIndices) {
var run = CreateRunForIdx(i, problemData, doubleVars, stringVars, dateTimeVars);
var targetValue = ds.GetDoubleValue(problemData.TargetVariable, i);
AddErrors(run, predictedValuesTrain[j++], targetValue);
run.Results.Add(PartitionLabel, new StringValue("Training"));
run.Color = Color.Gold;
runs.Add(run);
}
var predictedValuesTest = Content.EstimatedTestValues.ToArray();
j = 0;
foreach (var i in problemData.TestIndices) {
var run = CreateRunForIdx(i, problemData, doubleVars, stringVars, dateTimeVars);
var targetValue = ds.GetDoubleValue(problemData.TargetVariable, i);
AddErrors(run, predictedValuesTest[j++], targetValue);
run.Results.Add(PartitionLabel, new StringValue("Test"));
run.Color = Color.Red;
runs.Add(run);
}
if (string.IsNullOrEmpty(selectedXAxis))
selectedXAxis = "Index";
if (string.IsNullOrEmpty(selectedYAxis))
selectedYAxis = "Residual";
bubbleChartView.Content = runs;
bubbleChartView.SelectedXAxis = selectedXAxis;
bubbleChartView.SelectedYAxis = selectedYAxis;
}
private void AddErrors(IRun run, double pred, double target) {
var residual = target - pred;
var relError = residual / target;
run.Results.Add(TargetLabel, new DoubleValue(target));
run.Results.Add(PredictionLabel, new DoubleValue(pred));
run.Results.Add(ResidualLabel, new DoubleValue(residual));
run.Results.Add(AbsResidualLabel, new DoubleValue(Math.Abs(residual)));
run.Results.Add(RelativeErrorLabel, new DoubleValue(relError));
run.Results.Add(AbsRelativeErrorLabel, new DoubleValue(Math.Abs(relError)));
}
private IRun CreateRunForIdx(int i, IRegressionProblemData problemData, IEnumerable doubleVars, IEnumerable stringVars, IEnumerable dateTimeVars) {
var ds = problemData.Dataset;
var run = new Run();
foreach (var variableName in doubleVars) {
run.Results.Add(variableName, new DoubleValue(ds.GetDoubleValue(variableName, i)));
}
foreach (var variableName in stringVars) {
run.Results.Add(variableName, new StringValue(ds.GetStringValue(variableName, i)));
}
foreach (var variableName in dateTimeVars) {
run.Results.Add(variableName, new DateTimeValue(ds.GetDateTimeValue(variableName, i)));
}
return run;
}
#endregion
}
}