#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.IO;
using System.Linq;
using HeuristicLab.Algorithms.GeneticAlgorithm;
using HeuristicLab.Encodings.PermutationEncoding;
using HeuristicLab.Persistence.Default.Xml;
using HeuristicLab.Problems.Instances.TSPLIB;
using HeuristicLab.Problems.TravelingSalesman;
using HeuristicLab.Selection;
using Microsoft.VisualStudio.TestTools.UnitTesting;
namespace HeuristicLab.Tests {
[TestClass]
public class GATspSampleTest {
private const string SampleFileName = "GA_TSP";
[TestMethod]
[TestCategory("Samples.Create")]
[TestProperty("Time", "medium")]
public void CreateGaTspSampleTest() {
var ga = CreateGaTspSample();
string path = Path.Combine(SamplesUtils.SamplesDirectory, SampleFileName + SamplesUtils.SampleFileExtension);
XmlGenerator.Serialize(ga, path);
}
[TestMethod]
[TestCategory("Samples.Execute")]
[TestProperty("Time", "long")]
public void RunGaTspSampleTest() {
var ga = CreateGaTspSample();
ga.SetSeedRandomly.Value = false;
SamplesUtils.RunAlgorithm(ga);
Assert.AreEqual(12332, SamplesUtils.GetDoubleResult(ga, "BestQuality"));
Assert.AreEqual(13123.2, SamplesUtils.GetDoubleResult(ga, "CurrentAverageQuality"));
Assert.AreEqual(14538, SamplesUtils.GetDoubleResult(ga, "CurrentWorstQuality"));
Assert.AreEqual(99100, SamplesUtils.GetIntResult(ga, "EvaluatedSolutions"));
}
private GeneticAlgorithm CreateGaTspSample() {
GeneticAlgorithm ga = new GeneticAlgorithm();
#region Problem Configuration
var provider = new TSPLIBTSPInstanceProvider();
var instance = provider.GetDataDescriptors().Where(x => x.Name == "ch130").Single();
TravelingSalesmanProblem tspProblem = new TravelingSalesmanProblem();
tspProblem.Load(provider.LoadData(instance));
tspProblem.UseDistanceMatrix.Value = true;
#endregion
#region Algorithm Configuration
ga.Name = "Genetic Algorithm - TSP";
ga.Description = "A genetic algorithm which solves the \"ch130\" traveling salesman problem (imported from TSPLIB)";
ga.Problem = tspProblem;
SamplesUtils.ConfigureGeneticAlgorithmParameters(
ga, 100, 1, 1000, 0.05);
#endregion
return ga;
}
}
}