#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Random; namespace HeuristicLab.Problems.DataAnalysis.Symbolic { [StorableClass] public sealed class FactorVariableTreeNode : SymbolicExpressionTreeTerminalNode, IVariableTreeNode { public new FactorVariable Symbol { get { return (FactorVariable)base.Symbol; } } [Storable] private double[] weights; public double[] Weights { get { return weights; } set { weights = value; } } [Storable] private string variableName; public string VariableName { get { return variableName; } set { variableName = value; } } [StorableConstructor] private FactorVariableTreeNode(bool deserializing) : base(deserializing) { } private FactorVariableTreeNode(FactorVariableTreeNode original, Cloner cloner) : base(original, cloner) { variableName = original.variableName; if (original.weights != null) { this.weights = new double[original.Weights.Length]; Array.Copy(original.Weights, weights, weights.Length); } } public FactorVariableTreeNode(FactorVariable variableSymbol) : base(variableSymbol) { } public override bool HasLocalParameters { get { return true; } } public override void ResetLocalParameters(IRandom random) { base.ResetLocalParameters(random); variableName = Symbol.VariableNames.SampleRandom(random); weights = Symbol.GetVariableValues(variableName) .Select(_ => NormalDistributedRandom.NextDouble(random, 0, 1)).ToArray(); } public override void ShakeLocalParameters(IRandom random, double shakingFactor) { // mutate only one randomly selected weight var idx = random.Next(weights.Length); // 50% additive & 50% multiplicative if (random.NextDouble() < 0.5) { double x = NormalDistributedRandom.NextDouble(random, Symbol.WeightManipulatorMu, Symbol.WeightManipulatorSigma); weights[idx] = weights[idx] + x * shakingFactor; } else { double x = NormalDistributedRandom.NextDouble(random, 1.0, Symbol.MultiplicativeWeightManipulatorSigma); weights[idx] = weights[idx] * x; } if (random.NextDouble() < Symbol.VariableChangeProbability) { VariableName = Symbol.VariableNames.SampleRandom(random); if (weights.Length != Symbol.GetVariableValues(VariableName).Count()) { // if the length of the weight array does not match => re-initialize weights weights = Symbol.GetVariableValues(variableName) .Select(_ => NormalDistributedRandom.NextDouble(random, 0, 1)) .ToArray(); } } } public override IDeepCloneable Clone(Cloner cloner) { return new FactorVariableTreeNode(this, cloner); } public double GetValue(string cat) { return weights[Symbol.GetIndexForValue(VariableName, cat)]; } public override string ToString() { var weightStr = string.Join("; ", Symbol.GetVariableValues(VariableName).Select(value => value + ": " + GetValue(value).ToString("E4"))); return VariableName + " (factor) " + "[" + weightStr + "]"; } } }