#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic { /// /// An operator that analyzes the training best symbolic data analysis solution for multi objective symbolic data analysis problems. /// [Item("SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer", "An operator that analyzes the training best symbolic data analysis solution for multi objective symbolic data analysis problems.")] [StorableClass] public abstract class SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer : SymbolicDataAnalysisMultiObjectiveAnalyzer where T : class, ISymbolicDataAnalysisSolution { private const string TrainingBestSolutionsParameterName = "Best training solutions"; private const string TrainingBestSolutionQualitiesParameterName = "Best training solution qualities"; private const string UpdateAlwaysParameterName = "Always update best solutions"; private const string TrainingBestSolutionParameterName = "Best training solution"; #region parameter properties public ILookupParameter> TrainingBestSolutionsParameter { get { return (ILookupParameter>)Parameters[TrainingBestSolutionsParameterName]; } } public ILookupParameter> TrainingBestSolutionQualitiesParameter { get { return (ILookupParameter>)Parameters[TrainingBestSolutionQualitiesParameterName]; } } public IFixedValueParameter UpdateAlwaysParameter { get { return (IFixedValueParameter)Parameters[UpdateAlwaysParameterName]; } } #endregion #region properties private ItemList TrainingBestSolutions { get { return TrainingBestSolutionsParameter.ActualValue; } set { TrainingBestSolutionsParameter.ActualValue = value; } } private ItemList TrainingBestSolutionQualities { get { return TrainingBestSolutionQualitiesParameter.ActualValue; } set { TrainingBestSolutionQualitiesParameter.ActualValue = value; } } public bool UpdateAlways { get { return UpdateAlwaysParameter.Value.Value; } set { UpdateAlwaysParameter.Value.Value = value; } } #endregion [StorableConstructor] protected SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer(bool deserializing) : base(deserializing) { } protected SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer(SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { } public SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer() : base() { Parameters.Add(new LookupParameter>(TrainingBestSolutionsParameterName, "The training best (Pareto-optimal) symbolic data analysis solutions.")); Parameters.Add(new LookupParameter>(TrainingBestSolutionQualitiesParameterName, "The qualities of the training best (Pareto-optimal) solutions.")); Parameters.Add(new FixedValueParameter(UpdateAlwaysParameterName, "Determines if the best training solutions should always be updated regardless of its quality.", new BoolValue(false))); UpdateAlwaysParameter.Hidden = true; } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { if (!Parameters.ContainsKey(UpdateAlwaysParameterName)) { Parameters.Add(new FixedValueParameter(UpdateAlwaysParameterName, "Determines if the best training solutions should always be updated regardless of its quality.", new BoolValue(false))); UpdateAlwaysParameter.Hidden = true; } } public override IOperation Apply() { var results = ResultCollection; // create empty parameter and result values if (TrainingBestSolutions == null) { TrainingBestSolutions = new ItemList(); TrainingBestSolutionQualities = new ItemList(); results.Add(new Result(TrainingBestSolutionQualitiesParameter.Name, TrainingBestSolutionQualitiesParameter.Description, TrainingBestSolutionQualities)); results.Add(new Result(TrainingBestSolutionsParameter.Name, TrainingBestSolutionsParameter.Description, TrainingBestSolutions)); } if (!results.ContainsKey(TrainingBestSolutionParameterName)) { results.Add(new Result(TrainingBestSolutionParameterName, "", typeof(ISymbolicDataAnalysisSolution))); } //if the pareto front of best solutions shall be updated regardless of the quality, the list initialized empty to discard old solutions List trainingBestQualities; if (UpdateAlways) { trainingBestQualities = new List(); } else { trainingBestQualities = TrainingBestSolutionQualities.Select(x => x.ToArray()).ToList(); } ISymbolicExpressionTree[] trees = SymbolicExpressionTree.ToArray(); List qualities = Qualities.Select(x => x.ToArray()).ToList(); bool[] maximization = Maximization.ToArray(); var nonDominatedIndividuals = new[] { new { Tree = default(ISymbolicExpressionTree), Qualities = default(double[]) } }.ToList(); nonDominatedIndividuals.Clear(); // build list of new non-dominated solutions for (int i = 0; i < trees.Length; i++) { if (IsNonDominated(qualities[i], nonDominatedIndividuals.Select(ind => ind.Qualities), maximization) && IsNonDominated(qualities[i], trainingBestQualities, maximization)) { for (int j = nonDominatedIndividuals.Count - 1; j >= 0; j--) { if (IsBetterOrEqual(qualities[i], nonDominatedIndividuals[j].Qualities, maximization)) { nonDominatedIndividuals.RemoveAt(j); } } nonDominatedIndividuals.Add(new { Tree = trees[i], Qualities = qualities[i] }); } } var nonDominatedSolutions = nonDominatedIndividuals.Select(x => new { Solution = CreateSolution(x.Tree, x.Qualities), Qualities = x.Qualities }).ToList(); nonDominatedSolutions.ForEach(s => s.Solution.Name = string.Join(",", s.Qualities.Select(q => q.ToString()))); #region update Pareto-optimal solution archive if (nonDominatedSolutions.Count > 0) { //add old non-dominated solutions only if they are not dominated by one of the new solutions for (int i = 0; i < trainingBestQualities.Count; i++) { if (IsNonDominated(trainingBestQualities[i], nonDominatedSolutions.Select(x => x.Qualities), maximization)) { nonDominatedSolutions.Add(new { Solution = TrainingBestSolutions[i], Qualities = TrainingBestSolutionQualities[i].ToArray() }); } } //assumes the the first objective is always the accuracy var sortedNonDominatedSolutions = maximization[0] ? nonDominatedSolutions.OrderByDescending(x => x.Qualities[0]) : nonDominatedSolutions.OrderBy(x => x.Qualities[0]); var trainingBestSolution = sortedNonDominatedSolutions.Select(s => s.Solution).First(); results[TrainingBestSolutionParameterName].Value = trainingBestSolution; TrainingBestSolutions = new ItemList(sortedNonDominatedSolutions.Select(x => x.Solution)); results[TrainingBestSolutionsParameter.Name].Value = TrainingBestSolutions; TrainingBestSolutionQualities = new ItemList(sortedNonDominatedSolutions.Select(x => new DoubleArray(x.Qualities))); results[TrainingBestSolutionQualitiesParameter.Name].Value = TrainingBestSolutionQualities; } #endregion return base.Apply(); } protected abstract T CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality); private bool IsNonDominated(double[] point, IEnumerable points, bool[] maximization) { foreach (var refPoint in points) { bool refPointDominatesPoint = IsBetterOrEqual(refPoint, point, maximization); if (refPointDominatesPoint) return false; } return true; } private bool IsBetterOrEqual(double[] lhs, double[] rhs, bool[] maximization) { for (int i = 0; i < lhs.Length; i++) { var result = IsBetterOrEqual(lhs[i], rhs[i], maximization[i]); if (!result) return false; } return true; } private bool IsBetterOrEqual(double lhs, double rhs, bool maximization) { if (maximization) return lhs >= rhs; else return lhs <= rhs; } } }