#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.Algorithms.DataAnalysis { [Item("Random", "Initializes the matrix randomly.")] [StorableClass] public sealed class RandomInitializer : NcaInitializer, IStochasticOperator { public ILookupParameter RandomParameter { get { return (ILookupParameter)Parameters["Random"]; } } [StorableConstructor] private RandomInitializer(bool deserializing) : base(deserializing) { } private RandomInitializer(RandomInitializer original, Cloner cloner) : base(original, cloner) { } public RandomInitializer() : base() { Parameters.Add(new LookupParameter("Random", "The random number generator to use.")); } public override IDeepCloneable Clone(Cloner cloner) { return new RandomInitializer(this, cloner); } public override double[,] Initialize(IClassificationProblemData data, int dimensions) { var attributes = data.AllowedInputVariables.Count(); var random = RandomParameter.ActualValue; var matrix = new double[attributes, dimensions]; for (int i = 0; i < attributes; i++) for (int j = 0; j < dimensions; j++) matrix[i, j] = random.NextDouble(); return matrix; } } }