#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Algorithms.DataAnalysis {
[StorableClass]
[Item(Name = "CovarianceSpectralMixture",
Description = "The spectral mixture kernel described in Wilson A. G. and Adams R.P., Gaussian Process Kernels for Pattern Discovery and Exptrapolation, ICML 2013.")]
public sealed class CovarianceSpectralMixture : ParameterizedNamedItem, ICovarianceFunction {
public const string QParameterName = "Number of components (Q)";
public const string WeightParameterName = "Weight";
public const string FrequencyParameterName = "Component frequency (mu)";
public const string LengthScaleParameterName = "Length scale (nu)";
public IValueParameter QParameter {
get { return (IValueParameter)Parameters[QParameterName]; }
}
public IValueParameter WeightParameter {
get { return (IValueParameter)Parameters[WeightParameterName]; }
}
public IValueParameter FrequencyParameter {
get { return (IValueParameter)Parameters[FrequencyParameterName]; }
}
public IValueParameter LengthScaleParameter {
get { return (IValueParameter)Parameters[LengthScaleParameterName]; }
}
private bool HasFixedWeightParameter {
get { return WeightParameter.Value != null; }
}
private bool HasFixedFrequencyParameter {
get { return FrequencyParameter.Value != null; }
}
private bool HasFixedLengthScaleParameter {
get { return LengthScaleParameter.Value != null; }
}
[StorableConstructor]
private CovarianceSpectralMixture(bool deserializing)
: base(deserializing) {
}
private CovarianceSpectralMixture(CovarianceSpectralMixture original, Cloner cloner)
: base(original, cloner) {
}
public CovarianceSpectralMixture()
: base() {
Name = ItemName;
Description = ItemDescription;
Parameters.Add(new ValueParameter(QParameterName, "The number of Gaussians (Q) to use for the spectral mixture.", new IntValue(10)));
Parameters.Add(new OptionalValueParameter(WeightParameterName, "The weight of the component w (peak height of the Gaussian in spectrum)."));
Parameters.Add(new OptionalValueParameter(FrequencyParameterName, "The inverse component period parameter mu_q (location of the Gaussian in spectrum)."));
Parameters.Add(new OptionalValueParameter(LengthScaleParameterName, "The length scale parameter (nu_q) (variance of the Gaussian in the spectrum)."));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new CovarianceSpectralMixture(this, cloner);
}
public int GetNumberOfParameters(int numberOfVariables) {
var q = QParameter.Value.Value;
return
(HasFixedWeightParameter ? 0 : q) +
(HasFixedFrequencyParameter ? 0 : q * numberOfVariables) +
(HasFixedLengthScaleParameter ? 0 : q * numberOfVariables);
}
public void SetParameter(double[] p) {
double[] weight, frequency, lengthScale;
GetParameterValues(p, out weight, out frequency, out lengthScale);
WeightParameter.Value = new DoubleArray(weight);
FrequencyParameter.Value = new DoubleArray(frequency);
LengthScaleParameter.Value = new DoubleArray(lengthScale);
}
private void GetParameterValues(double[] p, out double[] weight, out double[] frequency, out double[] lengthScale) {
// gather parameter values
int c = 0;
int q = QParameter.Value.Value;
// guess number of elements for frequency and length (=q * numberOfVariables)
int n = WeightParameter.Value == null ? ((p.Length - q) / 2) : (p.Length / 2);
if (HasFixedWeightParameter) {
weight = WeightParameter.Value.ToArray();
} else {
weight = p.Skip(c).Select(Math.Exp).Take(q).ToArray();
c += q;
}
if (HasFixedFrequencyParameter) {
frequency = FrequencyParameter.Value.ToArray();
} else {
frequency = p.Skip(c).Select(Math.Exp).Take(n).ToArray();
c += n;
}
if (HasFixedLengthScaleParameter) {
lengthScale = LengthScaleParameter.Value.ToArray();
} else {
lengthScale = p.Skip(c).Select(Math.Exp).Take(n).ToArray();
c += n;
}
if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceSpectralMixture", "p");
}
public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) {
double[] weight, frequency, lengthScale;
GetParameterValues(p, out weight, out frequency, out lengthScale);
var fixedWeight = HasFixedWeightParameter;
var fixedFrequency = HasFixedFrequencyParameter;
var fixedLengthScale = HasFixedLengthScaleParameter;
// create functions
var cov = new ParameterizedCovarianceFunction();
cov.Covariance = (x, i, j) => {
return GetCovariance(x, x, i, j, QParameter.Value.Value, weight, frequency,
lengthScale, columnIndices);
};
cov.CrossCovariance = (x, xt, i, j) => {
return GetCovariance(x, xt, i, j, QParameter.Value.Value, weight, frequency,
lengthScale, columnIndices);
};
cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, QParameter.Value.Value, weight, frequency,
lengthScale, columnIndices, fixedWeight, fixedFrequency, fixedLengthScale);
return cov;
}
private static double GetCovariance(double[,] x, double[,] xt, int i, int j, int maxQ, double[] weight, double[] frequency, double[] lengthScale, int[] columnIndices) {
// tau = x - x' (only for selected variables)
double[] tau =
Util.GetRow(x, i, columnIndices).Zip(Util.GetRow(xt, j, columnIndices), (xi, xj) => xi - xj).ToArray();
int numberOfVariables = lengthScale.Length / maxQ;
double k = 0;
// for each component
for (int q = 0; q < maxQ; q++) {
double kc = weight[q]; // weighted kernel component
int idx = 0; // helper index for tau
// for each selected variable
for (int c = 0; c < columnIndices.Length; c++) {
var col = columnIndices[c];
kc *= f1(tau[idx], lengthScale[q * numberOfVariables + col]) * f2(tau[idx], frequency[q * numberOfVariables + col]);
idx++;
}
k += kc;
}
return k;
}
public static double f1(double tau, double lengthScale) {
return Math.Exp(-2 * Math.PI * Math.PI * tau * tau * lengthScale);
}
public static double f2(double tau, double frequency) {
return Math.Cos(2 * Math.PI * tau * frequency);
}
// order of returned gradients must match the order in GetParameterValues!
private static IList GetGradient(double[,] x, int i, int j, int maxQ, double[] weight, double[] frequency, double[] lengthScale, int[] columnIndices,
bool fixedWeight, bool fixedFrequency, bool fixedLengthScale) {
double[] tau = Util.GetRow(x, i, columnIndices).Zip(Util.GetRow(x, j, columnIndices), (xi, xj) => xi - xj).ToArray();
int numberOfVariables = lengthScale.Length / maxQ;
var g = new List((!fixedWeight ? maxQ : 0) + (!fixedFrequency ? maxQ * columnIndices.Length : 0) + (!fixedLengthScale ? maxQ * columnIndices.Length : 0));
if (!fixedWeight) {
// weight
// for each component
for (int q = 0; q < maxQ; q++) {
double k = weight[q];
int idx = 0; // helper index for tau
// for each selected variable
for (int c = 0; c < columnIndices.Length; c++) {
var col = columnIndices[c];
k *= f1(tau[idx], lengthScale[q * numberOfVariables + col]) * f2(tau[idx], frequency[q * numberOfVariables + col]);
idx++;
}
g.Add(k);
}
}
if (!fixedFrequency) {
// frequency
// for each component
for (int q = 0; q < maxQ; q++) {
int idx = 0; // helper index for tau
// for each selected variable
foreach (var c in columnIndices) {
double k = f1(tau[idx], lengthScale[q * numberOfVariables + c]) *
-2 * Math.PI * tau[idx] * frequency[q * numberOfVariables + c] *
Math.Sin(2 * Math.PI * tau[idx] * frequency[q * numberOfVariables + c]);
idx++;
g.Add(weight[q] * k);
}
}
}
if (!fixedLengthScale) {
// length scale
// for each component
for (int q = 0; q < maxQ; q++) {
int idx = 0; // helper index for tau
// for each selected variable
foreach (var c in columnIndices) {
double k = -2 * Math.PI * Math.PI * tau[idx] * tau[idx] * lengthScale[q * numberOfVariables + c] *
f1(tau[idx], lengthScale[q * numberOfVariables + c]) *
f2(tau[idx], frequency[q * numberOfVariables + c]);
idx++;
g.Add(weight[q] * k);
}
}
}
return g;
}
}
}