using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Problems.Instances.DataAnalysis; using HeuristicLab.Random; namespace HeuristicLab.Algorithms.DataAnalysis.SymRegGrammarEnumeration { class AircraftMaximumLift : ArtificialRegressionDataDescriptor { public override string Name { get { return "Aircraft Maximum Lift Coefficient"; } } public override string Description { get { return "Paper: A multilevel block building algorithm for fast modeling generalized separable systems. " + Environment.NewLine + "Author: Chen Chen, Changtong Luo, Zonglin Jiang" + Environment.NewLine; } } protected override string TargetVariable { get { return "f(X)"; } } protected override string[] VariableNames { get { return new string[] { "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "f(X)" }; } } protected override string[] AllowedInputVariables { get { return new string[] { "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18" }; } } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return 100; } } protected override int TestPartitionStart { get { return 100; } } protected override int TestPartitionEnd { get { return 200; } } public int Seed { get; private set; } public AircraftMaximumLift() : this((int)System.DateTime.Now.Ticks) { } public AircraftMaximumLift(int seed) { Seed = seed; } protected override List> GenerateValues() { var rand = new MersenneTwister((uint)Seed); List> data = new List>(); var x1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.4, 0.8).ToList(); var x2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 3.0, 4.0).ToList(); var x3 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 20.0, 30.0).ToList(); var x4 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 2.0, 5.0).ToList(); var x13 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 2.0, 5.0).ToList(); var x16 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 2.0, 5.0).ToList(); var x5 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 1.5).ToList(); var x6 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 5.0, 7.0).ToList(); var x7 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.5, 1.5).ToList(); var x10 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.5, 1.5).ToList(); var x8 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 1.5).ToList(); var x11 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 1.5).ToList(); var x9 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 2.0).ToList(); var x12 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 2.0).ToList(); var x14 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 1.5).ToList(); var x17 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 1.5).ToList(); var x15 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 5.0, 7.0).ToList(); var x18 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 10.0, 20.0).ToList(); List fx = new List(); data.Add(x1); data.Add(x2); data.Add(x3); data.Add(x4); data.Add(x5); data.Add(x6); data.Add(x7); data.Add(x8); data.Add(x9); data.Add(x10); data.Add(x11); data.Add(x12); data.Add(x13); data.Add(x14); data.Add(x15); data.Add(x16); data.Add(x17); data.Add(x18); data.Add(fx); for (int i = 0; i < x1.Count; i++) { double fxi = x1[i]; fxi = fxi - 0.25 * x4[i] * x5[i] * x6[i] * (4 + 0.1 * (x2[i] / x3[i]) - (x2[i] / x3[i]) * (x2[i] / x3[i])); fxi = fxi + x13[i] * (x14[i] / x15[i]) * x18[i] * x7[i]; fxi = fxi - x13[i] * (x14[i] / x15[i]) * x8[i]; fxi = fxi + x13[i] * (x14[i] / x15[i]) * x9[i]; fxi = fxi + x16[i] * (x17[i] / x15[i]) * x18[i] * x10[i]; fxi = fxi - x16[i] * (x17[i] / x15[i]) * x11[i]; fxi = fxi + x16[i] * (x17[i] / x15[i]) * x12[i]; fx.Add(fxi); } return data; } } }