Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2886_SymRegGrammarEnumeration/ExpressionClustering/flann/include/flann/algorithms/kmeans_index.h @ 15840

Last change on this file since 15840 was 15840, checked in by gkronber, 6 years ago

#2886 added utility console program for clustering of expressions

File size: 33.8 KB
Line 
1/***********************************************************************
2 * Software License Agreement (BSD License)
3 *
4 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
5 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
6 *
7 * THE BSD LICENSE
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *************************************************************************/
30
31#ifndef FLANN_KMEANS_INDEX_H_
32#define FLANN_KMEANS_INDEX_H_
33
34#include <algorithm>
35#include <string>
36#include <map>
37#include <cassert>
38#include <limits>
39#include <cmath>
40
41#include "flann/general.h"
42#include "flann/algorithms/nn_index.h"
43#include "flann/algorithms/dist.h"
44#include "flann/util/matrix.h"
45#include "flann/util/result_set.h"
46#include "flann/util/heap.h"
47#include "flann/util/allocator.h"
48#include "flann/util/random.h"
49#include "flann/util/saving.h"
50#include "flann/util/logger.h"
51
52
53namespace flann
54{
55
56struct KMeansIndexParams : public IndexParams
57{
58    KMeansIndexParams(int branching = 32, int iterations = 11,
59                      flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 )
60    {
61        (*this)["algorithm"] = FLANN_INDEX_KMEANS;
62        // branching factor
63        (*this)["branching"] = branching;
64        // max iterations to perform in one kmeans clustering (kmeans tree)
65        (*this)["iterations"] = iterations;
66        // algorithm used for picking the initial cluster centers for kmeans tree
67        (*this)["centers_init"] = centers_init;
68        // cluster boundary index. Used when searching the kmeans tree
69        (*this)["cb_index"] = cb_index;
70    }
71};
72
73
74/**
75 * Hierarchical kmeans index
76 *
77 * Contains a tree constructed through a hierarchical kmeans clustering
78 * and other information for indexing a set of points for nearest-neighbour matching.
79 */
80template <typename Distance>
81class KMeansIndex : public NNIndex<Distance>
82{
83public:
84    typedef typename Distance::ElementType ElementType;
85    typedef typename Distance::ResultType DistanceType;
86
87    typedef bool needs_vector_space_distance;
88
89
90    typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&);
91
92    /**
93     * The function used for choosing the cluster centers.
94     */
95    centersAlgFunction chooseCenters;
96
97
98
99    /**
100     * Chooses the initial centers in the k-means clustering in a random manner.
101     *
102     * Params:
103     *     k = number of centers
104     *     vecs = the dataset of points
105     *     indices = indices in the dataset
106     *     indices_length = length of indices vector
107     *
108     */
109    void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length)
110    {
111        UniqueRandom r(indices_length);
112
113        int index;
114        for (index=0; index<k; ++index) {
115            bool duplicate = true;
116            int rnd;
117            while (duplicate) {
118                duplicate = false;
119                rnd = r.next();
120                if (rnd<0) {
121                    centers_length = index;
122                    return;
123                }
124
125                centers[index] = indices[rnd];
126
127                for (int j=0; j<index; ++j) {
128                    DistanceType sq = distance_(dataset_[centers[index]], dataset_[centers[j]], dataset_.cols);
129                    if (sq<1e-16) {
130                        duplicate = true;
131                    }
132                }
133            }
134        }
135
136        centers_length = index;
137    }
138
139
140    /**
141     * Chooses the initial centers in the k-means using Gonzales' algorithm
142     * so that the centers are spaced apart from each other.
143     *
144     * Params:
145     *     k = number of centers
146     *     vecs = the dataset of points
147     *     indices = indices in the dataset
148     * Returns:
149     */
150    void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length)
151    {
152        int n = indices_length;
153
154        int rnd = rand_int(n);
155        assert(rnd >=0 && rnd < n);
156
157        centers[0] = indices[rnd];
158
159        int index;
160        for (index=1; index<k; ++index) {
161
162            int best_index = -1;
163            DistanceType best_val = 0;
164            for (int j=0; j<n; ++j) {
165                DistanceType dist = distance_(dataset_[centers[0]],dataset_[indices[j]],dataset_.cols);
166                for (int i=1; i<index; ++i) {
167                    DistanceType tmp_dist = distance_(dataset_[centers[i]],dataset_[indices[j]],dataset_.cols);
168                    if (tmp_dist<dist) {
169                        dist = tmp_dist;
170                    }
171                }
172                if (dist>best_val) {
173                    best_val = dist;
174                    best_index = j;
175                }
176            }
177            if (best_index!=-1) {
178                centers[index] = indices[best_index];
179            }
180            else {
181                break;
182            }
183        }
184        centers_length = index;
185    }
186
187
188    /**
189     * Chooses the initial centers in the k-means using the algorithm
190     * proposed in the KMeans++ paper:
191     * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
192     *
193     * Implementation of this function was converted from the one provided in Arthur's code.
194     *
195     * Params:
196     *     k = number of centers
197     *     vecs = the dataset of points
198     *     indices = indices in the dataset
199     * Returns:
200     */
201    void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length)
202    {
203        int n = indices_length;
204
205        double currentPot = 0;
206        DistanceType* closestDistSq = new DistanceType[n];
207
208        // Choose one random center and set the closestDistSq values
209        int index = rand_int(n);
210        assert(index >=0 && index < n);
211        centers[0] = indices[index];
212
213        for (int i = 0; i < n; i++) {
214            closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
215            currentPot += closestDistSq[i];
216        }
217
218
219        const int numLocalTries = 1;
220
221        // Choose each center
222        int centerCount;
223        for (centerCount = 1; centerCount < k; centerCount++) {
224
225            // Repeat several trials
226            double bestNewPot = -1;
227            int bestNewIndex = -1;
228            for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
229
230                // Choose our center - have to be slightly careful to return a valid answer even accounting
231                // for possible rounding errors
232                double randVal = rand_double(currentPot);
233                for (index = 0; index < n-1; index++) {
234                    if (randVal <= closestDistSq[index]) break;
235                    else randVal -= closestDistSq[index];
236                }
237
238                // Compute the new potential
239                double newPot = 0;
240                for (int i = 0; i < n; i++) newPot += std::min( distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols), closestDistSq[i] );
241
242                // Store the best result
243                if ((bestNewPot < 0)||(newPot < bestNewPot)) {
244                    bestNewPot = newPot;
245                    bestNewIndex = index;
246                }
247            }
248
249            // Add the appropriate center
250            centers[centerCount] = indices[bestNewIndex];
251            currentPot = bestNewPot;
252            for (int i = 0; i < n; i++) closestDistSq[i] = std::min( distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols), closestDistSq[i] );
253        }
254
255        centers_length = centerCount;
256
257        delete[] closestDistSq;
258    }
259
260
261
262public:
263
264    flann_algorithm_t getType() const
265    {
266        return FLANN_INDEX_KMEANS;
267    }
268
269    /**
270     * Index constructor
271     *
272     * Params:
273     *          inputData = dataset with the input features
274     *          params = parameters passed to the hierarchical k-means algorithm
275     */
276    KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(),
277                Distance d = Distance())
278        : dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d)
279    {
280        memoryCounter_ = 0;
281
282        size_ = dataset_.rows;
283        veclen_ = dataset_.cols;
284
285        branching_ = get_param(params,"branching",32);
286        iterations_ = get_param(params,"iterations",11);
287        if (iterations_<0) {
288            iterations_ = (std::numeric_limits<int>::max)();
289        }
290        centers_init_  = get_param(params,"centers_init",FLANN_CENTERS_RANDOM);
291
292        if (centers_init_==FLANN_CENTERS_RANDOM) {
293            chooseCenters = &KMeansIndex::chooseCentersRandom;
294        }
295        else if (centers_init_==FLANN_CENTERS_GONZALES) {
296            chooseCenters = &KMeansIndex::chooseCentersGonzales;
297        }
298        else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
299            chooseCenters = &KMeansIndex::chooseCentersKMeanspp;
300        }
301        else {
302            throw FLANNException("Unknown algorithm for choosing initial centers.");
303        }
304        cb_index_ = 0.4f;
305
306    }
307
308
309    KMeansIndex(const KMeansIndex&);
310    KMeansIndex& operator=(const KMeansIndex&);
311
312
313    /**
314     * Index destructor.
315     *
316     * Release the memory used by the index.
317     */
318    virtual ~KMeansIndex()
319    {
320        if (root_ != NULL) {
321            free_centers(root_);
322        }
323        if (indices_!=NULL) {
324            delete[] indices_;
325        }
326    }
327
328    /**
329     *  Returns size of index.
330     */
331    size_t size() const
332    {
333        return size_;
334    }
335
336    /**
337     * Returns the length of an index feature.
338     */
339    size_t veclen() const
340    {
341        return veclen_;
342    }
343
344
345    void set_cb_index( float index)
346    {
347        cb_index_ = index;
348    }
349
350    /**
351     * Computes the inde memory usage
352     * Returns: memory used by the index
353     */
354    int usedMemory() const
355    {
356        return pool_.usedMemory+pool_.wastedMemory+memoryCounter_;
357    }
358
359    /**
360     * Builds the index
361     */
362    void buildIndex()
363    {
364        if (branching_<2) {
365            throw FLANNException("Branching factor must be at least 2");
366        }
367
368        indices_ = new int[size_];
369        for (size_t i=0; i<size_; ++i) {
370            indices_[i] = int(i);
371        }
372
373        root_ = pool_.allocate<KMeansNode>();
374        computeNodeStatistics(root_, indices_, (int)size_);
375        computeClustering(root_, indices_, (int)size_, branching_,0);
376    }
377
378
379    void saveIndex(FILE* stream)
380    {
381        save_value(stream, branching_);
382        save_value(stream, iterations_);
383        save_value(stream, memoryCounter_);
384        save_value(stream, cb_index_);
385        save_value(stream, *indices_, (int)size_);
386
387        save_tree(stream, root_);
388    }
389
390
391    void loadIndex(FILE* stream)
392    {
393        load_value(stream, branching_);
394        load_value(stream, iterations_);
395        load_value(stream, memoryCounter_);
396        load_value(stream, cb_index_);
397        if (indices_!=NULL) {
398            delete[] indices_;
399        }
400        indices_ = new int[size_];
401        load_value(stream, *indices_, size_);
402
403        if (root_!=NULL) {
404            free_centers(root_);
405        }
406        load_tree(stream, root_);
407
408        index_params_["algorithm"] = getType();
409        index_params_["branching"] = branching_;
410        index_params_["iterations"] = iterations_;
411        index_params_["centers_init"] = centers_init_;
412        index_params_["cb_index"] = cb_index_;
413
414    }
415
416
417    /**
418     * Find set of nearest neighbors to vec. Their indices are stored inside
419     * the result object.
420     *
421     * Params:
422     *     result = the result object in which the indices of the nearest-neighbors are stored
423     *     vec = the vector for which to search the nearest neighbors
424     *     searchParams = parameters that influence the search algorithm (checks, cb_index)
425     */
426    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
427    {
428
429        int maxChecks = searchParams.checks;
430
431        if (maxChecks==FLANN_CHECKS_UNLIMITED) {
432            findExactNN(root_, result, vec);
433        }
434        else {
435            // Priority queue storing intermediate branches in the best-bin-first search
436            Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
437
438            int checks = 0;
439            findNN(root_, result, vec, checks, maxChecks, heap);
440
441            BranchSt branch;
442            while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
443                KMeansNodePtr node = branch.node;
444                findNN(node, result, vec, checks, maxChecks, heap);
445            }
446
447            delete heap;
448        }
449
450    }
451
452    /**
453     * Clustering function that takes a cut in the hierarchical k-means
454     * tree and return the clusters centers of that clustering.
455     * Params:
456     *     numClusters = number of clusters to have in the clustering computed
457     * Returns: number of cluster centers
458     */
459    int getClusterCenters(Matrix<DistanceType>& centers)
460    {
461        int numClusters = centers.rows;
462        if (numClusters<1) {
463            throw FLANNException("Number of clusters must be at least 1");
464        }
465
466        DistanceType variance;
467        KMeansNodePtr* clusters = new KMeansNodePtr[numClusters];
468
469        int clusterCount = getMinVarianceClusters(root_, clusters, numClusters, variance);
470
471        Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount);
472
473        for (int i=0; i<clusterCount; ++i) {
474            DistanceType* center = clusters[i]->pivot;
475            for (size_t j=0; j<veclen_; ++j) {
476                centers[i][j] = center[j];
477            }
478        }
479        delete[] clusters;
480
481        return clusterCount;
482    }
483
484    IndexParams getParameters() const
485    {
486        return index_params_;
487    }
488
489
490private:
491    /**
492     * Struture representing a node in the hierarchical k-means tree.
493     */
494    struct KMeansNode
495    {
496        /**
497         * The cluster center.
498         */
499        DistanceType* pivot;
500        /**
501         * The cluster radius.
502         */
503        DistanceType radius;
504        /**
505         * The cluster mean radius.
506         */
507        DistanceType mean_radius;
508        /**
509         * The cluster variance.
510         */
511        DistanceType variance;
512        /**
513         * The cluster size (number of points in the cluster)
514         */
515        int size;
516        /**
517         * Child nodes (only for non-terminal nodes)
518         */
519        KMeansNode** childs;
520        /**
521         * Node points (only for terminal nodes)
522         */
523        int* indices;
524        /**
525         * Level
526         */
527        int level;
528    };
529    typedef KMeansNode* KMeansNodePtr;
530
531    /**
532     * Alias definition for a nicer syntax.
533     */
534    typedef BranchStruct<KMeansNodePtr, DistanceType> BranchSt;
535
536
537
538
539    void save_tree(FILE* stream, KMeansNodePtr node)
540    {
541        save_value(stream, *node);
542        save_value(stream, *(node->pivot), (int)veclen_);
543        if (node->childs==NULL) {
544            int indices_offset = (int)(node->indices - indices_);
545            save_value(stream, indices_offset);
546        }
547        else {
548            for(int i=0; i<branching_; ++i) {
549                save_tree(stream, node->childs[i]);
550            }
551        }
552    }
553
554
555    void load_tree(FILE* stream, KMeansNodePtr& node)
556    {
557        node = pool_.allocate<KMeansNode>();
558        load_value(stream, *node);
559        node->pivot = new DistanceType[veclen_];
560        load_value(stream, *(node->pivot), (int)veclen_);
561        if (node->childs==NULL) {
562            int indices_offset;
563            load_value(stream, indices_offset);
564            node->indices = indices_ + indices_offset;
565        }
566        else {
567            node->childs = pool_.allocate<KMeansNodePtr>(branching_);
568            for(int i=0; i<branching_; ++i) {
569                load_tree(stream, node->childs[i]);
570            }
571        }
572    }
573
574
575    /**
576     * Helper function
577     */
578    void free_centers(KMeansNodePtr node)
579    {
580        delete[] node->pivot;
581        if (node->childs!=NULL) {
582            for (int k=0; k<branching_; ++k) {
583                free_centers(node->childs[k]);
584            }
585        }
586    }
587
588    /**
589     * Computes the statistics of a node (mean, radius, variance).
590     *
591     * Params:
592     *     node = the node to use
593     *     indices = the indices of the points belonging to the node
594     */
595    void computeNodeStatistics(KMeansNodePtr node, int* indices, int indices_length)
596    {
597
598        DistanceType radius = 0;
599        DistanceType variance = 0;
600        DistanceType* mean = new DistanceType[veclen_];
601        memoryCounter_ += int(veclen_*sizeof(DistanceType));
602
603        memset(mean,0,veclen_*sizeof(DistanceType));
604
605        for (size_t i=0; i<size_; ++i) {
606            ElementType* vec = dataset_[indices[i]];
607            for (size_t j=0; j<veclen_; ++j) {
608                mean[j] += vec[j];
609            }
610            variance += distance_(vec, ZeroIterator<ElementType>(), veclen_);
611        }
612        for (size_t j=0; j<veclen_; ++j) {
613            mean[j] /= size_;
614        }
615        variance /= size_;
616        variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_);
617
618        DistanceType tmp = 0;
619        for (int i=0; i<indices_length; ++i) {
620            tmp = distance_(mean, dataset_[indices[i]], veclen_);
621            if (tmp>radius) {
622                radius = tmp;
623            }
624        }
625
626        node->variance = variance;
627        node->radius = radius;
628        node->pivot = mean;
629    }
630
631
632    /**
633     * The method responsible with actually doing the recursive hierarchical
634     * clustering
635     *
636     * Params:
637     *     node = the node to cluster
638     *     indices = indices of the points belonging to the current node
639     *     branching = the branching factor to use in the clustering
640     *
641     * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
642     */
643    void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level)
644    {
645        node->size = indices_length;
646        node->level = level;
647
648        if (indices_length < branching) {
649            node->indices = indices;
650            std::sort(node->indices,node->indices+indices_length);
651            node->childs = NULL;
652            return;
653        }
654
655        int* centers_idx = new int[branching];
656        int centers_length;
657        (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length);
658
659        if (centers_length<branching) {
660            node->indices = indices;
661            std::sort(node->indices,node->indices+indices_length);
662            node->childs = NULL;
663            delete [] centers_idx;
664            return;
665        }
666
667
668        Matrix<double> dcenters(new double[branching*veclen_],branching,veclen_);
669        for (int i=0; i<centers_length; ++i) {
670            ElementType* vec = dataset_[centers_idx[i]];
671            for (size_t k=0; k<veclen_; ++k) {
672                dcenters[i][k] = double(vec[k]);
673            }
674        }
675        delete[] centers_idx;
676
677        DistanceType* radiuses = new DistanceType[branching];
678        int* count = new int[branching];
679        for (int i=0; i<branching; ++i) {
680            radiuses[i] = 0;
681            count[i] = 0;
682        }
683
684        //  assign points to clusters
685        int* belongs_to = new int[indices_length];
686        for (int i=0; i<indices_length; ++i) {
687
688            DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_);
689            belongs_to[i] = 0;
690            for (int j=1; j<branching; ++j) {
691                DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_);
692                if (sq_dist>new_sq_dist) {
693                    belongs_to[i] = j;
694                    sq_dist = new_sq_dist;
695                }
696            }
697            if (sq_dist>radiuses[belongs_to[i]]) {
698                radiuses[belongs_to[i]] = sq_dist;
699            }
700            count[belongs_to[i]]++;
701        }
702
703        bool converged = false;
704        int iteration = 0;
705        while (!converged && iteration<iterations_) {
706            converged = true;
707            iteration++;
708
709            // compute the new cluster centers
710            for (int i=0; i<branching; ++i) {
711                memset(dcenters[i],0,sizeof(double)*veclen_);
712                radiuses[i] = 0;
713            }
714            for (int i=0; i<indices_length; ++i) {
715                ElementType* vec = dataset_[indices[i]];
716                double* center = dcenters[belongs_to[i]];
717                for (size_t k=0; k<veclen_; ++k) {
718                    center[k] += vec[k];
719                }
720            }
721            for (int i=0; i<branching; ++i) {
722                int cnt = count[i];
723                for (size_t k=0; k<veclen_; ++k) {
724                    dcenters[i][k] /= cnt;
725                }
726            }
727
728            // reassign points to clusters
729            for (int i=0; i<indices_length; ++i) {
730                DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_);
731                int new_centroid = 0;
732                for (int j=1; j<branching; ++j) {
733                    DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_);
734                    if (sq_dist>new_sq_dist) {
735                        new_centroid = j;
736                        sq_dist = new_sq_dist;
737                    }
738                }
739                if (sq_dist>radiuses[new_centroid]) {
740                    radiuses[new_centroid] = sq_dist;
741                }
742                if (new_centroid != belongs_to[i]) {
743                    count[belongs_to[i]]--;
744                    count[new_centroid]++;
745                    belongs_to[i] = new_centroid;
746
747                    converged = false;
748                }
749            }
750
751            for (int i=0; i<branching; ++i) {
752                // if one cluster converges to an empty cluster,
753                // move an element into that cluster
754                if (count[i]==0) {
755                    int j = (i+1)%branching;
756                    while (count[j]<=1) {
757                        j = (j+1)%branching;
758                    }
759
760                    for (int k=0; k<indices_length; ++k) {
761                        if (belongs_to[k]==j) {
762                            belongs_to[k] = i;
763                            count[j]--;
764                            count[i]++;
765                            break;
766                        }
767                    }
768                    converged = false;
769                }
770            }
771
772        }
773
774        DistanceType** centers = new DistanceType*[branching];
775
776        for (int i=0; i<branching; ++i) {
777            centers[i] = new DistanceType[veclen_];
778            memoryCounter_ += veclen_*sizeof(DistanceType);
779            for (size_t k=0; k<veclen_; ++k) {
780                centers[i][k] = (DistanceType)dcenters[i][k];
781            }
782        }
783
784
785        // compute kmeans clustering for each of the resulting clusters
786        node->childs = pool_.allocate<KMeansNodePtr>(branching);
787        int start = 0;
788        int end = start;
789        for (int c=0; c<branching; ++c) {
790            int s = count[c];
791
792            DistanceType variance = 0;
793            DistanceType mean_radius =0;
794            for (int i=0; i<indices_length; ++i) {
795                if (belongs_to[i]==c) {
796                    DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_);
797                    variance += d;
798                    mean_radius += sqrt(d);
799                    std::swap(indices[i],indices[end]);
800                    std::swap(belongs_to[i],belongs_to[end]);
801                    end++;
802                }
803            }
804            variance /= s;
805            mean_radius /= s;
806            variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_);
807
808            node->childs[c] = pool_.allocate<KMeansNode>();
809            node->childs[c]->radius = radiuses[c];
810            node->childs[c]->pivot = centers[c];
811            node->childs[c]->variance = variance;
812            node->childs[c]->mean_radius = mean_radius;
813            node->childs[c]->indices = NULL;
814            computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
815            start=end;
816        }
817
818        delete[] dcenters.ptr();
819        delete[] centers;
820        delete[] radiuses;
821        delete[] count;
822        delete[] belongs_to;
823    }
824
825
826
827    /**
828     * Performs one descent in the hierarchical k-means tree. The branches not
829     * visited are stored in a priority queue.
830     *
831     * Params:
832     *      node = node to explore
833     *      result = container for the k-nearest neighbors found
834     *      vec = query points
835     *      checks = how many points in the dataset have been checked so far
836     *      maxChecks = maximum dataset points to checks
837     */
838
839
840    void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
841                Heap<BranchSt>* heap)
842    {
843        // Ignore those clusters that are too far away
844        {
845            DistanceType bsq = distance_(vec, node->pivot, veclen_);
846            DistanceType rsq = node->radius;
847            DistanceType wsq = result.worstDist();
848
849            DistanceType val = bsq-rsq-wsq;
850            DistanceType val2 = val*val-4*rsq*wsq;
851
852            //if (val>0) {
853            if ((val>0)&&(val2>0)) {
854                return;
855            }
856        }
857
858        if (node->childs==NULL) {
859            if (checks>=maxChecks) {
860                if (result.full()) return;
861            }
862            checks += node->size;
863            for (int i=0; i<node->size; ++i) {
864                int index = node->indices[i];
865                DistanceType dist = distance_(dataset_[index], vec, veclen_);
866                result.addPoint(dist, index);
867            }
868        }
869        else {
870            DistanceType* domain_distances = new DistanceType[branching_];
871            int closest_center = exploreNodeBranches(node, vec, domain_distances, heap);
872            delete[] domain_distances;
873            findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap);
874        }
875    }
876
877    /**
878     * Helper function that computes the nearest childs of a node to a given query point.
879     * Params:
880     *     node = the node
881     *     q = the query point
882     *     distances = array with the distances to each child node.
883     * Returns:
884     */
885    int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, Heap<BranchSt>* heap)
886    {
887
888        int best_index = 0;
889        domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_);
890        for (int i=1; i<branching_; ++i) {
891            domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_);
892            if (domain_distances[i]<domain_distances[best_index]) {
893                best_index = i;
894            }
895        }
896
897        //    float* best_center = node->childs[best_index]->pivot;
898        for (int i=0; i<branching_; ++i) {
899            if (i != best_index) {
900                domain_distances[i] -= cb_index_*node->childs[i]->variance;
901
902                //        float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q);
903                //        if (domain_distances[i]<dist_to_border) {
904                //          domain_distances[i] = dist_to_border;
905                //        }
906                heap->insert(BranchSt(node->childs[i],domain_distances[i]));
907            }
908        }
909
910        return best_index;
911    }
912
913
914    /**
915     * Function the performs exact nearest neighbor search by traversing the entire tree.
916     */
917    void findExactNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec)
918    {
919        // Ignore those clusters that are too far away
920        {
921            DistanceType bsq = distance_(vec, node->pivot, veclen_);
922            DistanceType rsq = node->radius;
923            DistanceType wsq = result.worstDist();
924
925            DistanceType val = bsq-rsq-wsq;
926            DistanceType val2 = val*val-4*rsq*wsq;
927
928            //                  if (val>0) {
929            if ((val>0)&&(val2>0)) {
930                return;
931            }
932        }
933
934
935        if (node->childs==NULL) {
936            for (int i=0; i<node->size; ++i) {
937                int index = node->indices[i];
938                DistanceType dist = distance_(dataset_[index], vec, veclen_);
939                result.addPoint(dist, index);
940            }
941        }
942        else {
943            int* sort_indices = new int[branching_];
944
945            getCenterOrdering(node, vec, sort_indices);
946
947            for (int i=0; i<branching_; ++i) {
948                findExactNN(node->childs[sort_indices[i]],result,vec);
949            }
950
951            delete[] sort_indices;
952        }
953    }
954
955
956    /**
957     * Helper function.
958     *
959     * I computes the order in which to traverse the child nodes of a particular node.
960     */
961    void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices)
962    {
963        DistanceType* domain_distances = new DistanceType[branching_];
964        for (int i=0; i<branching_; ++i) {
965            DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_);
966
967            int j=0;
968            while (domain_distances[j]<dist && j<i) j++;
969            for (int k=i; k>j; --k) {
970                domain_distances[k] = domain_distances[k-1];
971                sort_indices[k] = sort_indices[k-1];
972            }
973            domain_distances[j] = dist;
974            sort_indices[j] = i;
975        }
976        delete[] domain_distances;
977    }
978
979    /**
980     * Method that computes the squared distance from the query point q
981     * from inside region with center c to the border between this
982     * region and the region with center p
983     */
984    DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q)
985    {
986        DistanceType sum = 0;
987        DistanceType sum2 = 0;
988
989        for (int i=0; i<veclen_; ++i) {
990            DistanceType t = c[i]-p[i];
991            sum += t*(q[i]-(c[i]+p[i])/2);
992            sum2 += t*t;
993        }
994
995        return sum*sum/sum2;
996    }
997
998
999    /**
1000     * Helper function the descends in the hierarchical k-means tree by spliting those clusters that minimize
1001     * the overall variance of the clustering.
1002     * Params:
1003     *     root = root node
1004     *     clusters = array with clusters centers (return value)
1005     *     varianceValue = variance of the clustering (return value)
1006     * Returns:
1007     */
1008    int getMinVarianceClusters(KMeansNodePtr root, KMeansNodePtr* clusters, int clusters_length, DistanceType& varianceValue)
1009    {
1010        int clusterCount = 1;
1011        clusters[0] = root;
1012
1013        DistanceType meanVariance = root->variance*root->size;
1014
1015        while (clusterCount<clusters_length) {
1016            DistanceType minVariance = (std::numeric_limits<DistanceType>::max)();
1017            int splitIndex = -1;
1018
1019            for (int i=0; i<clusterCount; ++i) {
1020                if (clusters[i]->childs != NULL) {
1021
1022                    DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size;
1023
1024                    for (int j=0; j<branching_; ++j) {
1025                        variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size;
1026                    }
1027                    if (variance<minVariance) {
1028                        minVariance = variance;
1029                        splitIndex = i;
1030                    }
1031                }
1032            }
1033
1034            if (splitIndex==-1) break;
1035            if ( (branching_+clusterCount-1) > clusters_length) break;
1036
1037            meanVariance = minVariance;
1038
1039            // split node
1040            KMeansNodePtr toSplit = clusters[splitIndex];
1041            clusters[splitIndex] = toSplit->childs[0];
1042            for (int i=1; i<branching_; ++i) {
1043                clusters[clusterCount++] = toSplit->childs[i];
1044            }
1045        }
1046
1047        varianceValue = meanVariance/root->size;
1048        return clusterCount;
1049    }
1050
1051private:
1052    /** The branching factor used in the hierarchical k-means clustering */
1053    int branching_;
1054
1055    /** Maximum number of iterations to use when performing k-means clustering */
1056    int iterations_;
1057
1058    /** Algorithm for choosing the cluster centers */
1059    flann_centers_init_t centers_init_;
1060
1061    /**
1062     * Cluster border index. This is used in the tree search phase when determining
1063     * the closest cluster to explore next. A zero value takes into account only
1064     * the cluster centres, a value greater then zero also take into account the size
1065     * of the cluster.
1066     */
1067    float cb_index_;
1068
1069    /**
1070     * The dataset used by this index
1071     */
1072    const Matrix<ElementType> dataset_;
1073
1074    /** Index parameters */
1075    IndexParams index_params_;
1076
1077    /**
1078     * Number of features in the dataset.
1079     */
1080    size_t size_;
1081
1082    /**
1083     * Length of each feature.
1084     */
1085    size_t veclen_;
1086
1087    /**
1088     * The root node in the tree.
1089     */
1090    KMeansNodePtr root_;
1091
1092    /**
1093     *  Array of indices to vectors in the dataset.
1094     */
1095    int* indices_;
1096
1097    /**
1098     * The distance
1099     */
1100    Distance distance_;
1101
1102    /**
1103     * Pooled memory allocator.
1104     */
1105    PooledAllocator pool_;
1106
1107    /**
1108     * Memory occupied by the index.
1109     */
1110    int memoryCounter_;
1111};
1112
1113}
1114
1115#endif //FLANN_KMEANS_INDEX_H_
Note: See TracBrowser for help on using the repository browser.