#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
///
/// Abstract base class for multi objective symbolic data analysis analyzers.
///
[StorableClass]
public abstract class SymbolicDataAnalysisMultiObjectiveAnalyzer : SymbolicDataAnalysisAnalyzer, ISymbolicDataAnalysisMultiObjectiveAnalyzer {
private const string QualitiesParameterName = "Qualities";
private const string MaximizationParameterName = "Maximization";
private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
#region parameter properties
public IScopeTreeLookupParameter QualitiesParameter {
get { return (IScopeTreeLookupParameter)Parameters[QualitiesParameterName]; }
}
public ILookupParameter MaximizationParameter {
get { return (ILookupParameter)Parameters[MaximizationParameterName]; }
}
public ILookupParameter ApplyLinearScalingParameter {
get { return (ILookupParameter)Parameters[ApplyLinearScalingParameterName]; }
}
#endregion
#region properties
public ItemArray Qualities {
get { return QualitiesParameter.ActualValue; }
}
public BoolArray Maximization {
get { return MaximizationParameter.ActualValue; }
}
#endregion
[StorableConstructor]
protected SymbolicDataAnalysisMultiObjectiveAnalyzer(bool deserializing) : base(deserializing) { }
protected SymbolicDataAnalysisMultiObjectiveAnalyzer(SymbolicDataAnalysisMultiObjectiveAnalyzer original, Cloner cloner)
: base(original, cloner) {
}
public SymbolicDataAnalysisMultiObjectiveAnalyzer()
: base() {
Parameters.Add(new ScopeTreeLookupParameter(QualitiesParameterName, "The qualities of the trees that should be analyzed."));
Parameters.Add(new LookupParameter(MaximizationParameterName, "The directions of optimization for each dimension."));
Parameters.Add(new LookupParameter(ApplyLinearScalingParameterName, "Flag that indicates if the individual should be linearly scaled before evaluating."));
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
if (Parameters.ContainsKey(ApplyLinearScalingParameterName) && Parameters[ApplyLinearScalingParameterName] is LookupParameter)
Parameters.Remove(ApplyLinearScalingParameterName);
if (!Parameters.ContainsKey(ApplyLinearScalingParameterName))
Parameters.Add(new LookupParameter(ApplyLinearScalingParameterName, "Flag that indicates if the individual should be linearly scaled before evaluating."));
}
}
}