#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Algorithms.DataAnalysis {
[StorableClass]
[Item(Name = "CovarianceNeuralNetwork",
Description = "Neural network covariance function for Gaussian processes.")]
public sealed class CovarianceNeuralNetwork : ParameterizedNamedItem, ICovarianceFunction {
public IValueParameter ScaleParameter {
get { return (IValueParameter)Parameters["Scale"]; }
}
public IValueParameter LengthParameter {
get { return (IValueParameter)Parameters["Length"]; }
}
private bool HasFixedScaleParameter {
get { return ScaleParameter.Value != null; }
}
private bool HasFixedLengthParameter {
get { return LengthParameter.Value != null; }
}
[StorableConstructor]
private CovarianceNeuralNetwork(bool deserializing)
: base(deserializing) {
}
private CovarianceNeuralNetwork(CovarianceNeuralNetwork original, Cloner cloner)
: base(original, cloner) {
}
public CovarianceNeuralNetwork()
: base() {
Name = ItemName;
Description = ItemDescription;
Parameters.Add(new OptionalValueParameter("Scale", "The scale parameter."));
Parameters.Add(new OptionalValueParameter("Length", "The length parameter."));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new CovarianceNeuralNetwork(this, cloner);
}
public int GetNumberOfParameters(int numberOfVariables) {
return
(HasFixedScaleParameter ? 0 : 1) +
(HasFixedLengthParameter ? 0 : 1);
}
public void SetParameter(double[] p) {
double scale, length;
GetParameterValues(p, out scale, out length);
ScaleParameter.Value = new DoubleValue(scale);
LengthParameter.Value = new DoubleValue(length);
}
private void GetParameterValues(double[] p, out double scale, out double length) {
// gather parameter values
int c = 0;
if (HasFixedLengthParameter) {
length = LengthParameter.Value.Value;
} else {
length = Math.Exp(2 * p[c]);
c++;
}
if (HasFixedScaleParameter) {
scale = ScaleParameter.Value.Value;
} else {
scale = Math.Exp(2 * p[c]);
c++;
}
if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceNeuralNetwork", "p");
}
public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) {
double length, scale;
GetParameterValues(p, out scale, out length);
var fixedLength = HasFixedLengthParameter;
var fixedScale = HasFixedScaleParameter;
var cov = new ParameterizedCovarianceFunction();
cov.Covariance = (x, i, j) => {
double sx = 1.0;
double s1 = 1.0;
double s2 = 1.0;
for (int c = 0; c < columnIndices.Length; c++) {
var col = columnIndices[c];
sx += x[i, col] * x[j, col];
s1 += x[i, col] * x[i, col];
s2 += x[j, col] * x[j, col];
}
return (scale * Math.Asin(sx / (Math.Sqrt((length + s1) * (length + s2)))));
};
cov.CrossCovariance = (x, xt, i, j) => {
double sx = 1.0;
double s1 = 1.0;
double s2 = 1.0;
for (int c = 0; c < columnIndices.Length; c++) {
var col = columnIndices[c];
sx += x[i, col] * xt[j, col];
s1 += x[i, col] * x[i, col];
s2 += xt[j, col] * xt[j, col];
}
return (scale * Math.Asin(sx / (Math.Sqrt((length + s1) * (length + s2)))));
};
cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, length, scale, columnIndices, fixedLength, fixedScale);
return cov;
}
// order of returned gradients must match the order in GetParameterValues!
private static IList GetGradient(double[,] x, int i, int j, double length, double scale, int[] columnIndices,
bool fixedLength, bool fixedScale) {
double sx = 1.0;
double s1 = 1.0;
double s2 = 1.0;
for (int c = 0; c < columnIndices.Length; c++) {
var col = columnIndices[c];
sx += x[i, col] * x[j, col];
s1 += x[i, col] * x[i, col];
s2 += x[j, col] * x[j, col];
}
var h = (length + s1) * (length + s2);
var f = sx / Math.Sqrt(h);
var g = new List(2);
if (!fixedLength) g.Add(-scale / Math.Sqrt(1.0 - f * f) * ((length * sx * (2.0 * length + s1 + s2)) / Math.Pow(h, 3.0 / 2.0)));
if (!fixedScale) g.Add(2.0 * scale * Math.Asin(f));
return g;
}
}
}