#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.IO; using HeuristicLab.Algorithms.GeneticAlgorithm; using HeuristicLab.Encodings.LinearLinkageEncoding; using HeuristicLab.Persistence.Default.Xml; using HeuristicLab.Problems.Programmable; using HeuristicLab.Selection; using Microsoft.VisualStudio.TestTools.UnitTesting; namespace HeuristicLab.Tests { [TestClass] public class GAGroupingProblemSampleTest { private const string SampleFileName = "GA_Grouping"; #region Code private const string ProblemCode = @" using System; using System.Linq; using System.Collections.Generic; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.LinearLinkageEncoding; using HeuristicLab.Optimization; using HeuristicLab.Problems.Programmable; namespace HeuristicLab.Problems.Programmable { public class CompiledSingleObjectiveProblemDefinition : CompiledProblemDefinition, ISingleObjectiveProblemDefinition { private const int ProblemSize = 100; public bool Maximization { get { return false; } } private bool[,] adjacencyMatrix; public override void Initialize() { var encoding = new LinearLinkageEncoding(""lle"", length: ProblemSize); adjacencyMatrix = new bool[encoding.Length, encoding.Length]; var random = new System.Random(13); for (var i = 0; i < encoding.Length - 1; i++) for (var j = i + 1; j < encoding.Length; j++) adjacencyMatrix[i, j] = adjacencyMatrix[j, i] = random.Next(2) == 0; Encoding = encoding; } public double Evaluate(Individual individual, IRandom random) { var penalty = 0; var groups = individual.LinearLinkage(""lle"").GetGroups().ToList(); for (var i = 0; i < groups.Count; i++) { for (var j = 0; j < groups[i].Count; j++) for (var k = j + 1; k < groups[i].Count; k++) if (!adjacencyMatrix[groups[i][j], groups[i][k]]) penalty++; } var result = groups.Count; if (penalty > 0) result += penalty + ProblemSize; return result; } public void Analyze(Individual[] individuals, double[] qualities, ResultCollection results, IRandom random) { } public IEnumerable GetNeighbors(Individual individual, IRandom random) { foreach (var move in ExhaustiveSwap2MoveGenerator.Generate(individual.LinearLinkage(""lle""))) { var neighbor = individual.Copy(); var lle = neighbor.LinearLinkage(""lle""); Swap2MoveMaker.Apply(lle, move); yield return neighbor; } } } } "; #endregion [TestMethod] [TestCategory("Samples.Create")] [TestProperty("Time", "medium")] public void CreateGaGroupingProblemSampleTest() { var ga = CreateGaGroupingProblemSample(); string path = Path.Combine(SamplesUtils.SamplesDirectory, SampleFileName + SamplesUtils.SampleFileExtension); XmlGenerator.Serialize(ga, path); } [TestMethod] [TestCategory("Samples.Execute")] [TestProperty("Time", "long")] public void RunGaGroupingProblemSampleTest() { var ga = CreateGaGroupingProblemSample(); ga.SetSeedRandomly.Value = false; SamplesUtils.RunAlgorithm(ga); Assert.AreEqual(127, SamplesUtils.GetDoubleResult(ga, "BestQuality")); Assert.AreEqual(129,38, SamplesUtils.GetDoubleResult(ga, "CurrentAverageQuality")); Assert.AreEqual(132, SamplesUtils.GetDoubleResult(ga, "CurrentWorstQuality")); Assert.AreEqual(99100, SamplesUtils.GetIntResult(ga, "EvaluatedSolutions")); } private GeneticAlgorithm CreateGaGroupingProblemSample() { GeneticAlgorithm ga = new GeneticAlgorithm(); #region Problem Configuration var problem = new SingleObjectiveProgrammableProblem() { ProblemScript = { Code = ProblemCode } }; problem.ProblemScript.Compile(); #endregion #region Algorithm Configuration ga.Name = "Genetic Algorithm - Graph Coloring"; ga.Description = "A genetic algorithm which solves a graph coloring problem using the linear linkage encoding."; ga.Problem = problem; SamplesUtils.ConfigureGeneticAlgorithmParameters( ga, 100, 1, 1000, 0.05, 2); #endregion return ga; } } }