#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.PermutationEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.PluginInfrastructure;
using HeuristicLab.Optimization;
using System.Collections.Generic;
using HeuristicLab.Problems.Instances.Types;
using HeuristicLab.Problems.Instances;
namespace HeuristicLab.Problems.LinearOrdering {
[Item("Linear Ordering Problem (LOP)", "Represents a Linear Ordering Problem")]
[Creatable(CreatableAttribute.Categories.CombinatorialProblems)]
[StorableClass]
public sealed class LinearOrderingProblem : SingleObjectiveBasicProblem, IProblemInstanceConsumer, IProblemInstanceExporter, IStorableContent {
#region Fields
private static readonly LOPData DefaultInstance = new LOPData() {
Name = "Linaer Ordering Problem (LOP)",
Description = "The default instance of the LOP in HeuristicLab",
Dimension = 4,
Matrix = new double[,] {
{0 ,3, 6 ,6},
{2 ,0, 8 ,4},
{4 ,2, 0 ,4},
{5 ,3, 8 ,0}
}
};
public event EventHandler BestKnownSolutionChanged;
#endregion
#region Getter/Setter
public OptionalValueParameter BestKnownSolutionParameter
{
get { return (OptionalValueParameter)Parameters["BestKnownSolution"]; }
}
public OptionalValueParameter MatrixParameter
{
get { return (OptionalValueParameter)Parameters["Matrix"]; }
}
public Permutation BestKnownSolution
{
get { return BestKnownSolutionParameter.Value; }
set
{
BestKnownSolutionParameter.Value = value;
if (BestKnownSolutionChanged != null) { OnBestKnownSolutionChanged(); }
}
}
public DoubleMatrix Matrix
{
get { return MatrixParameter.Value; }
set { MatrixParameter.Value = value; }
}
public override bool Maximization { get { return true; } }
#endregion
#region Ctor
[StorableConstructor]
private LinearOrderingProblem(bool deserializing) : base(deserializing) { }
private LinearOrderingProblem(LinearOrderingProblem original, Cloner cloner) : base(original, cloner) { }
public LinearOrderingProblem() {
Parameters.Add(new OptionalValueParameter("BestKnownSolution", "The best known solution of this LOP instance."));
Parameters.Add(new OptionalValueParameter("Matrix", "The matrix which contains the corresponding LOP-values"));
Load(DefaultInstance);
EvaluatorParameter.GetsCollected = false;
EvaluatorParameter.Hidden = true;
Evaluator.QualityParameter.ActualName = "SuperDiagonale";
}
#endregion
#region Methods
public override IDeepCloneable Clone(Cloner cloner) {
return new LinearOrderingProblem(this, cloner);
}
public void Load(LOPData data) {
if (data.BestKnownQuality.HasValue) {
BestKnownQuality = data.BestKnownQuality.Value;
}
Name = data.Name;
Description = data.Description;
Matrix = new DoubleMatrix(data.Matrix);
Encoding.Length = Matrix.Columns;
if (data.BestKnownPermutation != null) {
int[] permut = data.BestKnownPermutation;
//Clean up if the first index = 1
if (!permut.Contains(0)) { permut = permut.Select(v => v - 1).ToArray(); }
BestKnownSolution = new Permutation(PermutationTypes.Absolute, data.BestKnownPermutation);
BestKnownQuality = Evaluate(permut, Matrix);
}
}
public LOPData Export() {
var result = new LOPData {
Name = Name,
Description = Description,
BestKnownQuality = BestKnownQuality,
BestKnownPermutation = BestKnownSolution.ToArray(),
Dimension = Matrix.Rows,
Matrix = Matrix.CloneAsMatrix()
};
return result;
}
public override double Evaluate(Individual individual, IRandom random) {
return Evaluate(individual.Permutation().ToArray(), Matrix);
}
#endregion
#region Helper Methods
private void OnBestKnownSolutionChanged() {
BestKnownSolutionChanged?.Invoke(this, EventArgs.Empty);
}
private double Evaluate(int[] permutation, DoubleMatrix matrix) {
double sum = 0;
for (int i = 1; i < matrix.Columns; i++) {
for (int j = 0; j < i; j++) {
sum += matrix[permutation[j], permutation[i]];
}
}
return sum;
}
#endregion
}
}