#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
[Item("Symbolic Classification Problem (single-objective)", "Represents a single objective symbolic classfication problem.")]
[StorableClass]
[Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 120)]
public class SymbolicClassificationSingleObjectiveProblem : SymbolicDataAnalysisSingleObjectiveProblem, IClassificationProblem {
private const double PunishmentFactor = 10;
private const int InitialMaximumTreeDepth = 8;
private const int InitialMaximumTreeLength = 25;
private const string EstimationLimitsParameterName = "EstimationLimits";
private const string EstimationLimitsParameterDescription = "The lower and upper limit for the estimated value that can be returned by the symbolic classification model.";
private const string ModelCreatorParameterName = "ModelCreator";
#region parameter properties
public IFixedValueParameter EstimationLimitsParameter {
get { return (IFixedValueParameter)Parameters[EstimationLimitsParameterName]; }
}
public IValueParameter ModelCreatorParameter {
get { return (IValueParameter)Parameters[ModelCreatorParameterName]; }
}
#endregion
#region properties
public DoubleLimit EstimationLimits {
get { return EstimationLimitsParameter.Value; }
}
public ISymbolicClassificationModelCreator ModelCreator {
get { return ModelCreatorParameter.Value; }
}
#endregion
[StorableConstructor]
protected SymbolicClassificationSingleObjectiveProblem(bool deserializing) : base(deserializing) { }
protected SymbolicClassificationSingleObjectiveProblem(SymbolicClassificationSingleObjectiveProblem original, Cloner cloner)
: base(original, cloner) {
RegisterEventHandlers();
}
public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicClassificationSingleObjectiveProblem(this, cloner); }
public SymbolicClassificationSingleObjectiveProblem()
: base(new ClassificationProblemData(), new SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator(), new SymbolicDataAnalysisExpressionTreeCreator()) {
Parameters.Add(new FixedValueParameter(EstimationLimitsParameterName, EstimationLimitsParameterDescription));
Parameters.Add(new ValueParameter(ModelCreatorParameterName, "", new AccuracyMaximizingThresholdsModelCreator()));
ApplyLinearScalingParameter.Value.Value = false;
EstimationLimitsParameter.Hidden = true;
MaximumSymbolicExpressionTreeDepth.Value = InitialMaximumTreeDepth;
MaximumSymbolicExpressionTreeLength.Value = InitialMaximumTreeLength;
RegisterEventHandlers();
ConfigureGrammarSymbols();
InitializeOperators();
UpdateEstimationLimits();
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
// BackwardsCompatibility3.4
#region Backwards compatible code, remove with 3.5
if (!Parameters.ContainsKey(ModelCreatorParameterName))
Parameters.Add(new ValueParameter(ModelCreatorParameterName, "", new AccuracyMaximizingThresholdsModelCreator()));
bool changed = false;
if (!Operators.OfType().Any()) {
Operators.Add(new SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer());
changed = true;
}
if (!Operators.OfType().Any()) {
Operators.Add(new SymbolicClassificationSingleObjectiveValidationParetoBestSolutionAnalyzer());
changed = true;
}
if (changed) ParameterizeOperators();
#endregion
RegisterEventHandlers();
}
private void RegisterEventHandlers() {
SymbolicExpressionTreeGrammarParameter.ValueChanged += (o, e) => ConfigureGrammarSymbols();
ModelCreatorParameter.NameChanged += (o, e) => ParameterizeOperators();
}
private void ConfigureGrammarSymbols() {
var grammar = SymbolicExpressionTreeGrammar as TypeCoherentExpressionGrammar;
if (grammar != null) grammar.ConfigureAsDefaultClassificationGrammar();
}
private void InitializeOperators() {
Operators.Add(new SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer());
Operators.Add(new SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer());
Operators.Add(new SymbolicClassificationSingleObjectiveOverfittingAnalyzer());
Operators.Add(new SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer());
Operators.Add(new SymbolicClassificationSingleObjectiveValidationParetoBestSolutionAnalyzer());
Operators.Add(new SymbolicExpressionTreePhenotypicSimilarityCalculator());
Operators.Add(new SymbolicClassificationPhenotypicDiversityAnalyzer(Operators.OfType()));
ParameterizeOperators();
}
private void UpdateEstimationLimits() {
if (ProblemData.TrainingIndices.Any()) {
var targetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToList();
var mean = targetValues.Average();
var range = targetValues.Max() - targetValues.Min();
EstimationLimits.Upper = mean + PunishmentFactor * range;
EstimationLimits.Lower = mean - PunishmentFactor * range;
} else {
EstimationLimits.Upper = double.MaxValue;
EstimationLimits.Lower = double.MinValue;
}
}
protected override void OnProblemDataChanged() {
base.OnProblemDataChanged();
UpdateEstimationLimits();
}
protected override void ParameterizeOperators() {
base.ParameterizeOperators();
if (Parameters.ContainsKey(EstimationLimitsParameterName)) {
var operators = Parameters.OfType().Select(p => p.Value).OfType().Union(Operators);
foreach (var op in operators.OfType())
op.EstimationLimitsParameter.ActualName = EstimationLimitsParameter.Name;
foreach (var op in operators.OfType())
op.ModelCreatorParameter.ActualName = ModelCreatorParameter.Name;
}
foreach (var op in Operators.OfType()) {
op.SolutionVariableName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
op.QualityVariableName = Evaluator.QualityParameter.ActualName;
if (op is SymbolicExpressionTreePhenotypicSimilarityCalculator) {
var phenotypicSimilarityCalculator = (SymbolicExpressionTreePhenotypicSimilarityCalculator)op;
phenotypicSimilarityCalculator.ProblemData = ProblemData;
phenotypicSimilarityCalculator.Interpreter = SymbolicExpressionTreeInterpreter;
}
}
}
}
}