Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2845_EnhancedProgress/HeuristicLab.Algorithms.DataAnalysis/3.4/Nca/NcaGradientCalculator.cs @ 15852

Last change on this file since 15852 was 14843, checked in by gkronber, 8 years ago

#2697: applied r14390, r14391, r14393, r14394, r14396 again (resolving conflicts)

File size: 7.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.RealVectorEncoding;
29using HeuristicLab.Operators;
30using HeuristicLab.Optimization;
31using HeuristicLab.Parameters;
32using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
33using HeuristicLab.Problems.DataAnalysis;
34
35namespace HeuristicLab.Algorithms.DataAnalysis {
36  [Item("NcaGradientCalculator", "Calculates the quality and gradient of a certain NCA matrix.")]
37  [StorableClass]
38  public class NcaGradientCalculator : SingleSuccessorOperator, ISingleObjectiveOperator {
39
40    #region Parameter Properties
41    public ILookupParameter<IntValue> DimensionsParameter {
42      get { return (ILookupParameter<IntValue>)Parameters["Dimensions"]; }
43    }
44
45    public ILookupParameter<IntValue> NeighborSamplesParameter {
46      get { return (ILookupParameter<IntValue>)Parameters["NeighborSamples"]; }
47    }
48
49    public ILookupParameter<DoubleValue> RegularizationParameter {
50      get { return (ILookupParameter<DoubleValue>)Parameters["Regularization"]; }
51    }
52
53    public ILookupParameter<RealVector> NcaMatrixParameter {
54      get { return (ILookupParameter<RealVector>)Parameters["NcaMatrix"]; }
55    }
56
57    public ILookupParameter<RealVector> NcaMatrixGradientsParameter {
58      get { return (ILookupParameter<RealVector>)Parameters["NcaMatrixGradients"]; }
59    }
60
61    public ILookupParameter<DoubleValue> QualityParameter {
62      get { return (ILookupParameter<DoubleValue>)Parameters["Quality"]; }
63    }
64
65    public ILookupParameter<IClassificationProblemData> ProblemDataParameter {
66      get { return (ILookupParameter<IClassificationProblemData>)Parameters["ProblemData"]; }
67    }
68    #endregion
69
70    [StorableConstructor]
71    protected NcaGradientCalculator(bool deserializing) : base(deserializing) { }
72    protected NcaGradientCalculator(NcaGradientCalculator original, Cloner cloner) : base(original, cloner) { }
73    public NcaGradientCalculator()
74      : base() {
75      Parameters.Add(new LookupParameter<IntValue>("Dimensions", "The dimensions to which the feature space should be reduced to."));
76      Parameters.Add(new LookupParameter<IntValue>("NeighborSamples", "The number of neighbors that should be taken into account at maximum."));
77      Parameters.Add(new LookupParameter<DoubleValue>("Regularization", "The regularization term that constrains the expansion of the projected space."));
78      Parameters.Add(new LookupParameter<RealVector>("NcaMatrix", "The optimized matrix."));
79      Parameters.Add(new LookupParameter<RealVector>("NcaMatrixGradients", "The gradients from the matrix that is being optimized."));
80      Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The quality of the current matrix."));
81      Parameters.Add(new LookupParameter<IClassificationProblemData>("ProblemData", "The classification problem data."));
82    }
83
84    public override IDeepCloneable Clone(Cloner cloner) {
85      return new NcaGradientCalculator(this, cloner);
86    }
87
88    public override IOperation Apply() {
89      var problemData = ProblemDataParameter.ActualValue;
90      var dimensions = DimensionsParameter.ActualValue.Value;
91      var neighborSamples = NeighborSamplesParameter.ActualValue.Value;
92      var regularization = RegularizationParameter.ActualValue.Value;
93
94      var vector = NcaMatrixParameter.ActualValue;
95      var gradients = NcaMatrixGradientsParameter.ActualValue;
96      if (gradients == null) {
97        gradients = new RealVector(vector.Length);
98        NcaMatrixGradientsParameter.ActualValue = gradients;
99      }
100
101      var data = problemData.Dataset.ToArray(problemData.AllowedInputVariables,
102                                             problemData.TrainingIndices);
103      var classes = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).ToArray();
104
105      var quality = Gradient(vector, gradients, data, classes, dimensions, neighborSamples, regularization);
106      QualityParameter.ActualValue = new DoubleValue(quality);
107
108      return base.Apply();
109    }
110
111    private static double Gradient(RealVector A, RealVector grad, double[,] data, double[] classes, int dimensions, int neighborSamples, double regularization) {
112      var instances = data.GetLength(0);
113      var attributes = data.GetLength(1);
114
115      var AMatrix = new Matrix(A, A.Length / dimensions, dimensions);
116
117      alglib.sparsematrix probabilities;
118      alglib.sparsecreate(instances, instances, out probabilities);
119      var transformedDistances = new Dictionary<int, double>(instances);
120      for (int i = 0; i < instances; i++) {
121        var iVector = new Matrix(GetRow(data, i), data.GetLength(1));
122        for (int k = 0; k < instances; k++) {
123          if (k == i) {
124            transformedDistances.Remove(k);
125            continue;
126          }
127          var kVector = new Matrix(GetRow(data, k));
128          transformedDistances[k] = Math.Exp(-iVector.Multiply(AMatrix).Subtract(kVector.Multiply(AMatrix)).SumOfSquares());
129        }
130        var normalization = transformedDistances.Sum(x => x.Value);
131        if (normalization <= 0) continue;
132        foreach (var s in transformedDistances.Where(x => x.Value > 0).OrderByDescending(x => x.Value).Take(neighborSamples)) {
133          alglib.sparseset(probabilities, i, s.Key, s.Value / normalization);
134        }
135      }
136      alglib.sparseconverttocrs(probabilities); // needed to enumerate in order (top-down and left-right)
137
138      int t0 = 0, t1 = 0, r, c;
139      double val;
140      var pi = new double[instances];
141      while (alglib.sparseenumerate(probabilities, ref t0, ref t1, out r, out c, out val)) {
142        if (classes[r].IsAlmost(classes[c])) {
143          pi[r] += val;
144        }
145      }
146
147      var innerSum = new double[attributes, attributes];
148      while (alglib.sparseenumerate(probabilities, ref t0, ref t1, out r, out c, out val)) {
149        var vector = new Matrix(GetRow(data, r)).Subtract(new Matrix(GetRow(data, c)));
150        vector.OuterProduct(vector).Multiply(val * pi[r]).AddTo(innerSum);
151
152        if (classes[r].IsAlmost(classes[c])) {
153          vector.OuterProduct(vector).Multiply(-val).AddTo(innerSum);
154        }
155      }
156
157      var func = -pi.Sum() + regularization * AMatrix.SumOfSquares();
158
159      r = 0;
160      var newGrad = AMatrix.Multiply(-2.0).Transpose().Multiply(new Matrix(innerSum)).Transpose();
161      foreach (var g in newGrad) {
162        grad[r] = g + regularization * 2 * A[r];
163        r++;
164      }
165
166      return func;
167    }
168
169    private static IEnumerable<double> GetRow(double[,] data, int row) {
170      for (int i = 0; i < data.GetLength(1); i++)
171        yield return data[row, i];
172    }
173  }
174}
Note: See TracBrowser for help on using the repository browser.