#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis { [StorableClass] [Item("Prognosis Results", "Represents a collection of time series prognosis results.")] public class TimeSeriesPrognosisResults : ResultCollection { #region result names protected const string PrognosisTrainingMeanSquaredErrorResultName = "Mean squared error (training)"; protected const string PrognosisTestMeanSquaredErrorResultName = "Mean squared error (test)"; protected const string PrognosisTrainingMeanAbsoluteErrorResultName = "Mean absolute error (training)"; protected const string PrognosisTestMeanAbsoluteErrorResultName = "Mean absolute error (test)"; protected const string PrognosisTrainingSquaredCorrelationResultName = "Pearson's R² (training)"; protected const string PrognosisTestSquaredCorrelationResultName = "Pearson's R² (test)"; protected const string PrognosisTrainingRelativeErrorResultName = "Average relative error (training)"; protected const string PrognosisTestRelativeErrorResultName = "Average relative error (test)"; protected const string PrognosisTrainingNormalizedMeanSquaredErrorResultName = "Normalized mean squared error (training)"; protected const string PrognosisTestNormalizedMeanSquaredErrorResultName = "Normalized mean squared error (test)"; protected const string PrognosisTrainingMeanErrorResultName = "Mean error (training)"; protected const string PrognosisTestMeanErrorResultName = "Mean error (test)"; protected const string PrognosisTrainingDirectionalSymmetryResultName = "Average directional symmetry (training)"; protected const string PrognosisTestDirectionalSymmetryResultName = "Average directional symmetry (test)"; protected const string PrognosisTrainingWeightedDirectionalSymmetryResultName = "Average weighted directional symmetry (training)"; protected const string PrognosisTestWeightedDirectionalSymmetryResultName = "Average weighted directional symmetry (test)"; protected const string PrognosisTrainingTheilsUStatisticAR1ResultName = "Theil's U2 (AR1) (training)"; protected const string PrognosisTestTheilsUStatisticAR1ResultName = "Theil's U2 (AR1) (test)"; protected const string PrognosisTrainingTheilsUStatisticMeanResultName = "Theil's U2 (mean) (training)"; protected const string PrognosisTestTheilsUStatisticMeanResultName = "Theil's U2 (mean) (test)"; #endregion #region result descriptions protected const string PrognosisTrainingMeanSquaredErrorResultDescription = "Mean of squared errors of the model on the training partition"; protected const string PrognosisTestMeanSquaredErrorResultDescription = "Mean of squared errors of the model on the test partition"; protected const string PrognosisTrainingMeanAbsoluteErrorResultDescription = "Mean of absolute errors of the model on the training partition"; protected const string PrognosisTestMeanAbsoluteErrorResultDescription = "Mean of absolute errors of the model on the test partition"; protected const string PrognosisTrainingSquaredCorrelationResultDescription = "Squared Pearson's correlation coefficient of the model output and the actual values on the training partition"; protected const string PrognosisTestSquaredCorrelationResultDescription = "Squared Pearson's correlation coefficient of the model output and the actual values on the test partition"; protected const string PrognosisTrainingRelativeErrorResultDescription = "Average of the relative errors of the model output and the actual values on the training partition"; protected const string PrognosisTestRelativeErrorResultDescription = "Average of the relative errors of the model output and the actual values on the test partition"; protected const string PrognosisTrainingNormalizedMeanSquaredErrorResultDescription = "Normalized mean of squared errors of the model on the training partition"; protected const string PrognosisTestNormalizedMeanSquaredErrorResultDescription = "Normalized mean of squared errors of the model on the test partition"; protected const string PrognosisTrainingMeanErrorResultDescription = "Mean of errors of the model on the training partition"; protected const string PrognosisTestMeanErrorResultDescription = "Mean of errors of the model on the test partition"; protected const string PrognosisTrainingDirectionalSymmetryResultDescription = "The average directional symmetry of the forecasts of the model on the training partition"; protected const string PrognosisTestDirectionalSymmetryResultDescription = "The average directional symmetry of the forecasts of the model on the test partition"; protected const string PrognosisTrainingWeightedDirectionalSymmetryResultDescription = "The average weighted directional symmetry of the forecasts of the model on the training partition"; protected const string PrognosisTestWeightedDirectionalSymmetryResultDescription = "The average weighted directional symmetry of the forecasts of the model on the test partition"; protected const string PrognosisTrainingTheilsUStatisticAR1ResultDescription = "The Theil's U statistic (reference: AR1 model) of the forecasts of the model on the training partition"; protected const string PrognosisTestTheilsUStatisticAR1ResultDescription = "The Theil's U statistic (reference: AR1 model) of the forecasts of the model on the test partition"; protected const string PrognosisTrainingTheilsUStatisticMeanResultDescription = "The Theil's U statistic (reference: mean model) of the forecasts of the model on the training partition"; protected const string PrognosisTestTheilsUStatisticMeanResultDescription = "The Theil's U statistic (reference: mean value) of the forecasts of the model on the test partition"; #endregion #region result properties //prognosis results for different horizons public double PrognosisTrainingMeanSquaredError { get { if (!ContainsKey(PrognosisTrainingMeanSquaredErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingMeanSquaredErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingMeanSquaredErrorResultName)) Add(new Result(PrognosisTrainingMeanSquaredErrorResultName, PrognosisTrainingMeanSquaredErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingMeanSquaredErrorResultName].Value).Value = value; } } public double PrognosisTestMeanSquaredError { get { if (!ContainsKey(PrognosisTestMeanSquaredErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestMeanSquaredErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestMeanSquaredErrorResultName)) Add(new Result(PrognosisTestMeanSquaredErrorResultName, PrognosisTestMeanSquaredErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestMeanSquaredErrorResultName].Value).Value = value; } } public double PrognosisTrainingMeanAbsoluteError { get { if (!ContainsKey(PrognosisTrainingMeanAbsoluteErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingMeanAbsoluteErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingMeanAbsoluteErrorResultName)) Add(new Result(PrognosisTrainingMeanAbsoluteErrorResultName, PrognosisTrainingMeanAbsoluteErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingMeanAbsoluteErrorResultName].Value).Value = value; } } public double PrognosisTestMeanAbsoluteError { get { if (!ContainsKey(PrognosisTestMeanAbsoluteErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestMeanAbsoluteErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestMeanAbsoluteErrorResultName)) Add(new Result(PrognosisTestMeanAbsoluteErrorResultName, PrognosisTestMeanAbsoluteErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestMeanAbsoluteErrorResultName].Value).Value = value; } } public double PrognosisTrainingRSquared { get { if (!ContainsKey(PrognosisTrainingSquaredCorrelationResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingSquaredCorrelationResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingSquaredCorrelationResultName)) Add(new Result(PrognosisTrainingSquaredCorrelationResultName, PrognosisTrainingSquaredCorrelationResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingSquaredCorrelationResultName].Value).Value = value; } } public double PrognosisTestRSquared { get { if (!ContainsKey(PrognosisTestSquaredCorrelationResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestSquaredCorrelationResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestSquaredCorrelationResultName)) Add(new Result(PrognosisTestSquaredCorrelationResultName, PrognosisTestSquaredCorrelationResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestSquaredCorrelationResultName].Value).Value = value; } } public double PrognosisTrainingRelativeError { get { if (!ContainsKey(PrognosisTrainingRelativeErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingRelativeErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingRelativeErrorResultName)) Add(new Result(PrognosisTrainingRelativeErrorResultName, PrognosisTrainingRelativeErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingRelativeErrorResultName].Value).Value = value; } } public double PrognosisTestRelativeError { get { if (!ContainsKey(PrognosisTestRelativeErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestRelativeErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestRelativeErrorResultName)) Add(new Result(PrognosisTestRelativeErrorResultName, PrognosisTestRelativeErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestRelativeErrorResultName].Value).Value = value; } } public double PrognosisTrainingNormalizedMeanSquaredError { get { if (!ContainsKey(PrognosisTrainingNormalizedMeanSquaredErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingNormalizedMeanSquaredErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingNormalizedMeanSquaredErrorResultName)) Add(new Result(PrognosisTrainingNormalizedMeanSquaredErrorResultName, PrognosisTrainingNormalizedMeanSquaredErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingNormalizedMeanSquaredErrorResultName].Value).Value = value; } } public double PrognosisTestNormalizedMeanSquaredError { get { if (!ContainsKey(PrognosisTestNormalizedMeanSquaredErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestNormalizedMeanSquaredErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestNormalizedMeanSquaredErrorResultName)) Add(new Result(PrognosisTestNormalizedMeanSquaredErrorResultName, PrognosisTestNormalizedMeanSquaredErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestNormalizedMeanSquaredErrorResultName].Value).Value = value; } } public double PrognosisTrainingMeanError { get { if (!ContainsKey(PrognosisTrainingMeanErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingMeanErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingMeanErrorResultName)) Add(new Result(PrognosisTrainingMeanErrorResultName, PrognosisTrainingMeanErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingMeanErrorResultName].Value).Value = value; } } public double PrognosisTestMeanError { get { if (!ContainsKey(PrognosisTestMeanErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestMeanErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestMeanErrorResultName)) Add(new Result(PrognosisTestMeanErrorResultName, PrognosisTestMeanErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestMeanErrorResultName].Value).Value = value; } } public double PrognosisTrainingDirectionalSymmetry { get { if (!ContainsKey(PrognosisTrainingDirectionalSymmetryResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingDirectionalSymmetryResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingDirectionalSymmetryResultName)) Add(new Result(PrognosisTrainingDirectionalSymmetryResultName, PrognosisTrainingDirectionalSymmetryResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingDirectionalSymmetryResultName].Value).Value = value; } } public double PrognosisTestDirectionalSymmetry { get { if (!ContainsKey(PrognosisTestDirectionalSymmetryResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestDirectionalSymmetryResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestDirectionalSymmetryResultName)) Add(new Result(PrognosisTestDirectionalSymmetryResultName, PrognosisTestDirectionalSymmetryResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestDirectionalSymmetryResultName].Value).Value = value; } } public double PrognosisTrainingWeightedDirectionalSymmetry { get { if (!ContainsKey(PrognosisTrainingWeightedDirectionalSymmetryResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingWeightedDirectionalSymmetryResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingWeightedDirectionalSymmetryResultName)) Add(new Result(PrognosisTrainingWeightedDirectionalSymmetryResultName, PrognosisTrainingWeightedDirectionalSymmetryResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingWeightedDirectionalSymmetryResultName].Value).Value = value; } } public double PrognosisTestWeightedDirectionalSymmetry { get { if (!ContainsKey(PrognosisTestWeightedDirectionalSymmetryResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestWeightedDirectionalSymmetryResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestWeightedDirectionalSymmetryResultName)) Add(new Result(PrognosisTestWeightedDirectionalSymmetryResultName, PrognosisTestWeightedDirectionalSymmetryResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestWeightedDirectionalSymmetryResultName].Value).Value = value; } } public double PrognosisTrainingTheilsUStatisticAR1 { get { if (!ContainsKey(PrognosisTrainingTheilsUStatisticAR1ResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingTheilsUStatisticAR1ResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingTheilsUStatisticAR1ResultName)) Add(new Result(PrognosisTrainingTheilsUStatisticAR1ResultName, PrognosisTrainingTheilsUStatisticAR1ResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingTheilsUStatisticAR1ResultName].Value).Value = value; } } public double PrognosisTestTheilsUStatisticAR1 { get { if (!ContainsKey(PrognosisTestTheilsUStatisticAR1ResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestTheilsUStatisticAR1ResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestTheilsUStatisticAR1ResultName)) Add(new Result(PrognosisTestTheilsUStatisticAR1ResultName, PrognosisTestTheilsUStatisticAR1ResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestTheilsUStatisticAR1ResultName].Value).Value = value; } } public double PrognosisTrainingTheilsUStatisticMean { get { if (!ContainsKey(PrognosisTrainingTheilsUStatisticMeanResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingTheilsUStatisticMeanResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingTheilsUStatisticMeanResultName)) Add(new Result(PrognosisTrainingTheilsUStatisticMeanResultName, PrognosisTrainingTheilsUStatisticMeanResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingTheilsUStatisticMeanResultName].Value).Value = value; } } public double PrognosisTestTheilsUStatisticMean { get { if (!ContainsKey(PrognosisTestTheilsUStatisticMeanResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestTheilsUStatisticMeanResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestTheilsUStatisticMeanResultName)) Add(new Result(PrognosisTestTheilsUStatisticMeanResultName, PrognosisTestTheilsUStatisticMeanResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestTheilsUStatisticMeanResultName].Value).Value = value; } } #endregion [Storable] private int trainingHorizon; public int TrainingHorizon { get { return trainingHorizon; } set { if (trainingHorizon != value) { trainingHorizon = value; OnTrainingHorizonChanged(); } } } [Storable] private int testHorizon; public int TestHorizon { get { return testHorizon; } set { if (testHorizon != value) { testHorizon = value; OnTestHorizonChanged(); } } } private ITimeSeriesPrognosisSolution solution; [Storable] public ITimeSeriesPrognosisSolution Solution { get { return solution; } private set { solution = value; } //necessary for persistence } [StorableConstructor] public TimeSeriesPrognosisResults(bool deserializing) : base(deserializing) { } protected TimeSeriesPrognosisResults(TimeSeriesPrognosisResults original, Cloner cloner) : base(original, cloner) { this.trainingHorizon = original.trainingHorizon; this.testHorizon = original.testHorizon; this.solution = cloner.Clone(original.solution); } public override IDeepCloneable Clone(Cloner cloner) { return new TimeSeriesPrognosisResults(this, cloner); } public TimeSeriesPrognosisResults(int trainingHorizon, int testHorizon, ITimeSeriesPrognosisSolution solution) : base() { this.trainingHorizon = trainingHorizon; this.testHorizon = testHorizon; this.solution = solution; CalculateTrainingPrognosisResults(); CalculateTestPrognosisResults(); } #region events public event EventHandler TrainingHorizonChanged; protected virtual void OnTrainingHorizonChanged() { CalculateTrainingPrognosisResults(); var handler = TrainingHorizonChanged; if (handler != null) handler(this, EventArgs.Empty); } public event EventHandler TestHorizonChanged; protected virtual void OnTestHorizonChanged() { CalculateTestPrognosisResults(); var handler = TestHorizonChanged; if (handler != null) handler(this, EventArgs.Empty); } #endregion private void CalculateTrainingPrognosisResults() { OnlineCalculatorError errorState; var problemData = Solution.ProblemData; if (!problemData.TrainingIndices.Any()) return; var model = Solution.Model; //mean model double trainingMean = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).Average(); var meanModel = new ConstantModel(trainingMean, problemData.TargetVariable); //AR1 model double alpha, beta; IEnumerable trainingStartValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices.Select(r => r - 1).Where(r => r > 0)).ToList(); OnlineLinearScalingParameterCalculator.Calculate(problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices.Where(x => x > 0)), trainingStartValues, out alpha, out beta, out errorState); var AR1model = new TimeSeriesPrognosisAutoRegressiveModel(problemData.TargetVariable, new double[] { beta }, alpha); var trainingHorizions = problemData.TrainingIndices.Select(r => Math.Min(trainingHorizon, problemData.TrainingPartition.End - r)).ToList(); IEnumerable> trainingTargetValues = problemData.TrainingIndices.Zip(trainingHorizions, Enumerable.Range).Select(r => problemData.Dataset.GetDoubleValues(problemData.TargetVariable, r)).ToList(); IEnumerable> trainingEstimatedValues = model.GetPrognosedValues(problemData.Dataset, problemData.TrainingIndices, trainingHorizions).ToList(); IEnumerable> trainingMeanModelPredictions = meanModel.GetPrognosedValues(problemData.Dataset, problemData.TrainingIndices, trainingHorizions).ToList(); IEnumerable> trainingAR1ModelPredictions = AR1model.GetPrognosedValues(problemData.Dataset, problemData.TrainingIndices, trainingHorizions).ToList(); IEnumerable originalTrainingValues = trainingTargetValues.SelectMany(x => x).ToList(); IEnumerable estimatedTrainingValues = trainingEstimatedValues.SelectMany(x => x).ToList(); double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); PrognosisTrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN; double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); PrognosisTrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMAE : double.NaN; double trainingR = OnlinePearsonsRCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); PrognosisTrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR * trainingR : double.NaN; double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); PrognosisTrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN; double trainingNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); PrognosisTrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNMSE : double.NaN; double trainingME = OnlineMeanErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); PrognosisTrainingMeanError = errorState == OnlineCalculatorError.None ? trainingME : double.NaN; PrognosisTrainingDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingEstimatedValues, out errorState); PrognosisTrainingDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTrainingDirectionalSymmetry : 0.0; PrognosisTrainingWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingEstimatedValues, out errorState); PrognosisTrainingWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTrainingWeightedDirectionalSymmetry : 0.0; PrognosisTrainingTheilsUStatisticAR1 = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingAR1ModelPredictions, trainingEstimatedValues, out errorState); PrognosisTrainingTheilsUStatisticAR1 = errorState == OnlineCalculatorError.None ? PrognosisTrainingTheilsUStatisticAR1 : double.PositiveInfinity; PrognosisTrainingTheilsUStatisticMean = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingMeanModelPredictions, trainingEstimatedValues, out errorState); PrognosisTrainingTheilsUStatisticMean = errorState == OnlineCalculatorError.None ? PrognosisTrainingTheilsUStatisticMean : double.PositiveInfinity; } private void CalculateTestPrognosisResults() { OnlineCalculatorError errorState; var problemData = Solution.ProblemData; if (!problemData.TestIndices.Any()) return; var model = Solution.Model; var testHorizions = problemData.TestIndices.Select(r => Math.Min(testHorizon, problemData.TestPartition.End - r)).ToList(); IEnumerable> testTargetValues = problemData.TestIndices.Zip(testHorizions, Enumerable.Range).Select(r => problemData.Dataset.GetDoubleValues(problemData.TargetVariable, r)).ToList(); IEnumerable> testEstimatedValues = model.GetPrognosedValues(problemData.Dataset, problemData.TestIndices, testHorizions).ToList(); IEnumerable testStartValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TestIndices.Select(r => r - 1).Where(r => r > 0)).ToList(); IEnumerable originalTestValues = testTargetValues.SelectMany(x => x).ToList(); IEnumerable estimatedTestValues = testEstimatedValues.SelectMany(x => x).ToList(); double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); PrognosisTestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN; double testMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); PrognosisTestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMAE : double.NaN; double testR = OnlinePearsonsRCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); PrognosisTestRSquared = errorState == OnlineCalculatorError.None ? testR * testR : double.NaN; double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); PrognosisTestRelativeError = errorState == OnlineCalculatorError.None ? testRelError : double.NaN; double testNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); PrognosisTestNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? testNMSE : double.NaN; double testME = OnlineMeanErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); PrognosisTestMeanError = errorState == OnlineCalculatorError.None ? testME : double.NaN; PrognosisTestDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(testStartValues, testTargetValues, testEstimatedValues, out errorState); PrognosisTestDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTestDirectionalSymmetry : 0.0; PrognosisTestWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(testStartValues, testTargetValues, testEstimatedValues, out errorState); PrognosisTestWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTestWeightedDirectionalSymmetry : 0.0; if (problemData.TrainingIndices.Any()) { //mean model double trainingMean = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).Average(); var meanModel = new ConstantModel(trainingMean, problemData.TargetVariable); //AR1 model double alpha, beta; IEnumerable trainingStartValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices.Select(r => r - 1).Where(r => r > 0)).ToList(); OnlineLinearScalingParameterCalculator.Calculate(problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices.Where(x => x > 0)), trainingStartValues, out alpha, out beta, out errorState); var AR1model = new TimeSeriesPrognosisAutoRegressiveModel(problemData.TargetVariable, new double[] { beta }, alpha); IEnumerable> testMeanModelPredictions = meanModel.GetPrognosedValues(problemData.Dataset, problemData.TestIndices, testHorizions).ToList(); IEnumerable> testAR1ModelPredictions = AR1model.GetPrognosedValues(problemData.Dataset, problemData.TestIndices, testHorizions).ToList(); PrognosisTestTheilsUStatisticAR1 = OnlineTheilsUStatisticCalculator.Calculate(testStartValues, testTargetValues, testAR1ModelPredictions, testEstimatedValues, out errorState); PrognosisTestTheilsUStatisticAR1 = errorState == OnlineCalculatorError.None ? PrognosisTestTheilsUStatisticAR1 : double.PositiveInfinity; PrognosisTestTheilsUStatisticMean = OnlineTheilsUStatisticCalculator.Calculate(testStartValues, testTargetValues, testMeanModelPredictions, testEstimatedValues, out errorState); PrognosisTestTheilsUStatisticMean = errorState == OnlineCalculatorError.None ? PrognosisTestTheilsUStatisticMean : double.PositiveInfinity; } } } }