[8464] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16057] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8464] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
[8612] | 25 | using HeuristicLab.Data;
|
---|
[8982] | 26 | using HeuristicLab.Parameters;
|
---|
[8464] | 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 30 | [StorableClass]
|
---|
| 31 | [Item(Name = "CovarianceNoise",
|
---|
| 32 | Description = "Noise covariance function for Gaussian processes.")]
|
---|
[8612] | 33 | public sealed class CovarianceNoise : ParameterizedNamedItem, ICovarianceFunction {
|
---|
| 34 | public IValueParameter<DoubleValue> ScaleParameter {
|
---|
[8982] | 35 | get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
|
---|
[8612] | 36 | }
|
---|
[10489] | 37 | private bool HasFixedScaleParameter {
|
---|
| 38 | get { return ScaleParameter.Value != null; }
|
---|
| 39 | }
|
---|
[8464] | 40 |
|
---|
| 41 | [StorableConstructor]
|
---|
[8612] | 42 | private CovarianceNoise(bool deserializing)
|
---|
[8464] | 43 | : base(deserializing) {
|
---|
| 44 | }
|
---|
| 45 |
|
---|
[8612] | 46 | private CovarianceNoise(CovarianceNoise original, Cloner cloner)
|
---|
[8464] | 47 | : base(original, cloner) {
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | public CovarianceNoise()
|
---|
| 51 | : base() {
|
---|
[8612] | 52 | Name = ItemName;
|
---|
| 53 | Description = ItemDescription;
|
---|
| 54 |
|
---|
[8982] | 55 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale of noise."));
|
---|
[8464] | 56 | }
|
---|
| 57 |
|
---|
| 58 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 59 | return new CovarianceNoise(this, cloner);
|
---|
| 60 | }
|
---|
| 61 |
|
---|
[8982] | 62 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
[10489] | 63 | return HasFixedScaleParameter ? 0 : 1;
|
---|
[8612] | 64 | }
|
---|
| 65 |
|
---|
[8982] | 66 | public void SetParameter(double[] p) {
|
---|
| 67 | double scale;
|
---|
| 68 | GetParameterValues(p, out scale);
|
---|
| 69 | ScaleParameter.Value = new DoubleValue(scale);
|
---|
[8612] | 70 | }
|
---|
| 71 |
|
---|
[8982] | 72 | private void GetParameterValues(double[] p, out double scale) {
|
---|
| 73 | int c = 0;
|
---|
| 74 | // gather parameter values
|
---|
[10489] | 75 | if (HasFixedScaleParameter) {
|
---|
[8982] | 76 | scale = ScaleParameter.Value.Value;
|
---|
[8612] | 77 | } else {
|
---|
[8982] | 78 | scale = Math.Exp(2 * p[c]);
|
---|
| 79 | c++;
|
---|
[8612] | 80 | }
|
---|
[8982] | 81 | if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceNoise", "p");
|
---|
[8464] | 82 | }
|
---|
| 83 |
|
---|
[13721] | 84 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) {
|
---|
[8982] | 85 | double scale;
|
---|
| 86 | GetParameterValues(p, out scale);
|
---|
[10489] | 87 | var fixedScale = HasFixedScaleParameter;
|
---|
[8982] | 88 | // create functions
|
---|
| 89 | var cov = new ParameterizedCovarianceFunction();
|
---|
| 90 | cov.Covariance = (x, i, j) => i == j ? scale : 0.0;
|
---|
[13721] | 91 | cov.CrossCovariance = (x, xt, i, j) => Util.SqrDist(x, i, xt, j, columnIndices, 1.0) < 1e-9 ? scale : 0.0;
|
---|
[10489] | 92 | if (fixedScale)
|
---|
[13784] | 93 | cov.CovarianceGradient = (x, i, j) => new double[0];
|
---|
[10489] | 94 | else
|
---|
[13784] | 95 | cov.CovarianceGradient = (x, i, j) => new double[1] { i == j ? 2.0 * scale : 0.0 };
|
---|
[8982] | 96 | return cov;
|
---|
[8464] | 97 | }
|
---|
| 98 | }
|
---|
| 99 | }
|
---|