#region License Information
/* HeuristicLab
* Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.IO;
using System.Linq;
using HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Persistence.Default.Xml;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
using HeuristicLab.Problems.Instances.DataAnalysis;
using HeuristicLab.Selection;
using Microsoft.VisualStudio.TestTools.UnitTesting;
namespace HeuristicLab.Tests {
[TestClass]
public class GPSymbolicRegressionSampleWithOSTest {
private const string SampleFileName = "OSGP_SymReg";
private const int seed = 12345;
[TestMethod]
[TestCategory("Samples.Create")]
[TestProperty("Time", "medium")]
public void CreateGPSymbolicRegressionSampleWithOSTest() {
var osga = CreateGpSymbolicRegressionSample();
string path = Path.Combine(SamplesUtils.SamplesDirectory, SampleFileName + SamplesUtils.SampleFileExtension);
XmlGenerator.Serialize(osga, path);
}
[TestMethod]
[TestCategory("Samples.Execute")]
[TestProperty("Time", "long")]
public void RunGPSymbolicRegressionSampleWithOSTest() {
var osga = CreateGpSymbolicRegressionSample();
osga.SetSeedRandomly.Value = false;
osga.Seed.Value = seed;
osga.MaximumGenerations.Value = 10; //reduce unit test runtime
SamplesUtils.RunAlgorithm(osga);
var bestTrainingSolution = (IRegressionSolution)osga.Results["Best training solution"].Value;
if (Environment.Is64BitProcess) {
// the following are the result values as produced on builder.heuristiclab.com
// Unfortunately, running the same test on a different machine results in different values
// For x86 environments the results below match but on x64 there is a difference
// We tracked down the ConstantOptimizationEvaluator as a possible cause but have not
// been able to identify the real cause. Presumably, execution on a Xeon and a Core i7 processor
// leads to different results.
Assert.AreEqual(0.90811178793448177, SamplesUtils.GetDoubleResult(osga, "BestQuality"), 1E-8, Environment.NewLine + "Best Quality differs.");
Assert.AreEqual(0.87264498853305739, SamplesUtils.GetDoubleResult(osga, "CurrentAverageQuality"), 1E-8, Environment.NewLine + "Current Average Quality differs.");
Assert.AreEqual(0.75425658608938817, SamplesUtils.GetDoubleResult(osga, "CurrentWorstQuality"), 1E-8, Environment.NewLine + "Current Worst Quality differs.");
Assert.AreEqual(8900, SamplesUtils.GetIntResult(osga, "EvaluatedSolutions"), Environment.NewLine + "Evaluated Solutions differ.");
Assert.AreEqual(0.90811178793448177, bestTrainingSolution.TrainingRSquared, 1E-8, Environment.NewLine + "Best Training Solution Training R² differs.");
// Assert.AreEqual(0.896290231994223, bestTrainingSolution.TestRSquared, 1E-8, Environment.NewLine + "Best Training Solution Test R² differs.");
} else {
Assert.AreEqual(0.9971536312165723, SamplesUtils.GetDoubleResult(osga, "BestQuality"), 1E-8, Environment.NewLine + "Best Qualitiy differs.");
Assert.AreEqual(0.98382832370544937, SamplesUtils.GetDoubleResult(osga, "CurrentAverageQuality"), 1E-8, Environment.NewLine + "Current Average Quality differs.");
Assert.AreEqual(0.960805603777699, SamplesUtils.GetDoubleResult(osga, "CurrentWorstQuality"), 1E-8, Environment.NewLine + "Current Worst Quality differs.");
Assert.AreEqual(10500, SamplesUtils.GetIntResult(osga, "EvaluatedSolutions"), Environment.NewLine + "Evaluated Solutions differ.");
Assert.AreEqual(0.9971536312165723, bestTrainingSolution.TrainingRSquared, 1E-8, Environment.NewLine + "Best Training Solution Training R² differs.");
Assert.AreEqual(0.010190137960908724, bestTrainingSolution.TestRSquared, 1E-8, Environment.NewLine + "Best Training Solution Test R² differs.");
}
}
private OffspringSelectionGeneticAlgorithm CreateGpSymbolicRegressionSample() {
var osga = new OffspringSelectionGeneticAlgorithm();
#region Problem Configuration
var provider = new VariousInstanceProvider(seed);
var instance = provider.GetDataDescriptors().First(x => x.Name.StartsWith("Spatial co-evolution"));
var problemData = (RegressionProblemData)provider.LoadData(instance);
var problem = new SymbolicRegressionSingleObjectiveProblem();
problem.ProblemData = problemData;
problem.Load(problemData);
problem.BestKnownQuality.Value = 1.0;
#region configure grammar
var grammar = (TypeCoherentExpressionGrammar)problem.SymbolicExpressionTreeGrammar;
grammar.ConfigureAsDefaultRegressionGrammar();
//symbols square, power, squareroot, root, log, exp, sine, cosine, tangent, variable
var square = grammar.Symbols.OfType().Single();
var power = grammar.Symbols.OfType().Single();
var squareroot = grammar.Symbols.OfType().Single();
var root = grammar.Symbols.OfType().Single();
var log = grammar.Symbols.OfType().Single();
var exp = grammar.Symbols.OfType().Single();
var sine = grammar.Symbols.OfType().Single();
var cosine = grammar.Symbols.OfType().Single();
var tangent = grammar.Symbols.OfType().Single();
var variable = grammar.Symbols.OfType().Single();
var powerSymbols = grammar.Symbols.Single(s => s.Name == "Power Functions");
powerSymbols.Enabled = true;
square.Enabled = true;
square.InitialFrequency = 1.0;
foreach (var allowed in grammar.GetAllowedChildSymbols(square))
grammar.RemoveAllowedChildSymbol(square, allowed);
foreach (var allowed in grammar.GetAllowedChildSymbols(square, 0))
grammar.RemoveAllowedChildSymbol(square, allowed, 0);
grammar.AddAllowedChildSymbol(square, variable);
power.Enabled = false;
squareroot.Enabled = false;
foreach (var allowed in grammar.GetAllowedChildSymbols(squareroot))
grammar.RemoveAllowedChildSymbol(squareroot, allowed);
foreach (var allowed in grammar.GetAllowedChildSymbols(squareroot, 0))
grammar.RemoveAllowedChildSymbol(squareroot, allowed, 0);
grammar.AddAllowedChildSymbol(squareroot, variable);
root.Enabled = false;
log.Enabled = true;
log.InitialFrequency = 1.0;
foreach (var allowed in grammar.GetAllowedChildSymbols(log))
grammar.RemoveAllowedChildSymbol(log, allowed);
foreach (var allowed in grammar.GetAllowedChildSymbols(log, 0))
grammar.RemoveAllowedChildSymbol(log, allowed, 0);
grammar.AddAllowedChildSymbol(log, variable);
exp.Enabled = true;
exp.InitialFrequency = 1.0;
foreach (var allowed in grammar.GetAllowedChildSymbols(exp))
grammar.RemoveAllowedChildSymbol(exp, allowed);
foreach (var allowed in grammar.GetAllowedChildSymbols(exp, 0))
grammar.RemoveAllowedChildSymbol(exp, allowed, 0);
grammar.AddAllowedChildSymbol(exp, variable);
sine.Enabled = false;
foreach (var allowed in grammar.GetAllowedChildSymbols(sine))
grammar.RemoveAllowedChildSymbol(sine, allowed);
foreach (var allowed in grammar.GetAllowedChildSymbols(sine, 0))
grammar.RemoveAllowedChildSymbol(sine, allowed, 0);
grammar.AddAllowedChildSymbol(sine, variable);
cosine.Enabled = false;
foreach (var allowed in grammar.GetAllowedChildSymbols(cosine))
grammar.RemoveAllowedChildSymbol(cosine, allowed);
foreach (var allowed in grammar.GetAllowedChildSymbols(cosine, 0))
grammar.RemoveAllowedChildSymbol(cosine, allowed, 0);
grammar.AddAllowedChildSymbol(cosine, variable);
tangent.Enabled = false;
foreach (var allowed in grammar.GetAllowedChildSymbols(tangent))
grammar.RemoveAllowedChildSymbol(tangent, allowed);
foreach (var allowed in grammar.GetAllowedChildSymbols(tangent, 0))
grammar.RemoveAllowedChildSymbol(tangent, allowed, 0);
grammar.AddAllowedChildSymbol(tangent, variable);
#endregion
problem.SymbolicExpressionTreeGrammar = grammar;
// configure remaining problem parameters
problem.MaximumSymbolicExpressionTreeLength.Value = 50;
problem.MaximumSymbolicExpressionTreeDepth.Value = 12;
problem.MaximumFunctionDefinitions.Value = 0;
problem.MaximumFunctionArguments.Value = 0;
var evaluator = new SymbolicRegressionConstantOptimizationEvaluator();
evaluator.ConstantOptimizationIterations.Value = 5;
problem.EvaluatorParameter.Value = evaluator;
problem.RelativeNumberOfEvaluatedSamplesParameter.Hidden = true;
problem.SolutionCreatorParameter.Hidden = true;
#endregion
#region Algorithm Configuration
osga.Problem = problem;
osga.Name = "Offspring Selection Genetic Programming - Symbolic Regression";
osga.Description = "Genetic programming with strict offspring selection for solving a benchmark regression problem.";
SamplesUtils.ConfigureOsGeneticAlgorithmParameters(osga, 100, 1, 25, 0.2, 50);
var mutator = (MultiSymbolicExpressionTreeManipulator)osga.Mutator;
mutator.Operators.OfType().Single().ShakingFactor = 0.1;
mutator.Operators.OfType().Single().ShakingFactor = 1.0;
osga.Analyzer.Operators.SetItemCheckedState(
osga.Analyzer.Operators
.OfType()
.Single(), false);
osga.Analyzer.Operators.SetItemCheckedState(
osga.Analyzer.Operators
.OfType()
.First(), false);
osga.ComparisonFactorModifierParameter.Hidden = true;
osga.ComparisonFactorLowerBoundParameter.Hidden = true;
osga.ComparisonFactorUpperBoundParameter.Hidden = true;
osga.OffspringSelectionBeforeMutationParameter.Hidden = true;
osga.SuccessRatioParameter.Hidden = true;
osga.SelectedParentsParameter.Hidden = true;
osga.ElitesParameter.Hidden = true;
#endregion
return osga;
}
}
}