#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Threading;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Random;
using MathNet.Numerics.Interpolation;
using MathNet.Numerics.LinearAlgebra.Double;
using MathNet.Numerics.LinearAlgebra.Double.Solvers;
/*
* Experimenting with various spline implementations.
*
* There are many different variants of using splines.
* - Spline Interpolation
* - Natural Spline Interpolation
* - Smoothing Splines (Reinsch)
* - P-Splines
* - B-Splines
* - Regression Splines
* - Penalized Regression Splines
* -
*
*
* Generally, a spline is a piecewise function whereby each piece connects two knots.
* In almost all cases splines are univariate. There are extensions to more dimensions
* but this is much less convenient.
* A linear spline is a piecewise linear function. Usually the following constaints are enforced
* for each knot point k and the two piecewise functions fl and fr
* fl(k) = fr(k), fl(k)' = fr(k)', fl(k)''=0, fr(k)''=0, additionally constraints for
* the boundary knots are often enforced.
* Spline Interpolation solves the problem of finding a smooth interpolating function
* which goes through all knots exactly.
*
* In spline smoothing one tries to find a function minimizing the squared residuals
* and maximizing smoothness. For the smoothing spline g the optimization objective is
* || y - g(x) ||² + \lambda integrate (xmin : xmax) g(x)'' dx.
* The roughness penality is the integral over the second derivative of the smoothing spline
* over the whole domain of x. Lambda is used to balance the amount of smoothing.
* If lambda is set to zero, the solution is an interpolating spline. If lambda is set to
* infinity the solution is a maximally smooth function (= line).
* Interestingly, the estimation of a smoothing spline is a linear operation. As a consequence
* a lot of theory from linear models can be reused (e.g. cross-validation and generalized
* cross-validation) with minimal additional effort. GCV can also be used to tune the
* smoothing parameter automatically. Tuned algorithms are available to solve smoothing
* spline estimation efficiently O(n) or O(m²n) where m is the number of knots and n the
* number of data points.
* It is possible to calculate confidence intervals for the smoothing spline and given
* an error model subsequently also confidence intervals for predictions.
*
* We are primarily interested in spline smoothing / regression.
* Alglib and Math.NET provide several different implementations for interpolation
* including polynomial (cubic), Hermite, Akima, Linear, Catmull-Rom, Rational, ...
*
* For spline smoothing or regression there are also many differen variants.
*
* Smoothing Splines by Reinsch (Reinsch, Smoothing by Spline Functions, 1967).
* Pseudo-code for the algorithm is given in the paper. A small change in the algorithm
* to improve convergence is discussed in (Reinsch, Smoothing by Spline Functions II, 1970)
* The algorithm uses the properties of the smoothing matrix (bandedness) to calculate the
* smoothing spline in O(n). Two parameters have to be set (S and rho). If the noise in the
* data is known then both parameter can be set directly, otherwise S should be set to n-1
* and rho should be found via cross-validation.
* It is not easy to calculate a the CV (PRESS) or GCV in the approach by Reinsch and
* therefore the algorithm is not ideal.
* Wahba and colleagues (1990) introduced CV and GCV estimation.
* Hutchinson and colleages improved the algorithm (Fortran implementation available as
* algorithm 642.f from ACM).
*
* CUBGCV (Algorithm 642 Hutchingson)
* Several improvments over the Reinsch algorithm. In particular efficient calculation
* of the
* Finbarr O'Sullivan BART
* ...
*
* B-Splines
* ...
*
* P-Splines (Eilers and Marx), use the B-Spline basis in combination with a penality
* for large variations of subsequent B-Spline coefficients. Conceptually, if the
* coefficients of neighbouring B-Splines are almost the same then the resulting smoothing
* spline is less wiggly. It has been critizized that this is rather subjective.
* P-Splines also allow calculation of CV and GCV for a given smoothing parameter which
* can be used for optimization of lambda.
* It is easy to use P-Splines within GAMs (no backfitting necessary).
* The paper contains MATLAB code also for the calculation of the B-Spline basis.
* The computational effort is O(?). The authors argue that it is efficient.
* The number of knots is not critical it is possible to use every data point as knot.
*
* Alglib: penalized regression spline
* ...
*
* Alglib: penalized regression spline with support for weights
* ...
*/
namespace HeuristicLab.Algorithms.DataAnalysis.Experimental {
[Item("Splines", "")]
[Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 102)]
[StorableClass]
public sealed class Splines : FixedDataAnalysisAlgorithm {
[StorableConstructor]
private Splines(bool deserializing) : base(deserializing) { }
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
}
private Splines(Splines original, Cloner cloner)
: base(original, cloner) {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new Splines(this, cloner);
}
public Splines()
: base() {
var validTypes = new ItemSet(
new[] {
"Smoothing Spline (Reinsch)",
"Smoothing Spline (Reinsch with automatic tolerance determination using LOOCV)",
"B-Spline Smoothing",
"Penalized Regression Spline (alglib)",
"CUBGCV",
"Finnbar O'Sullivan (sbart)"
}.Select(s => new StringValue(s)));
Parameters.Add(new ConstrainedValueParameter("Type", "The type of spline (as supported by alglib)", validTypes, validTypes.Last()));
Parameters.Add(new ValueParameter("Lambda", "Regularization parameter for smoothing splines (0..+inf)", new DoubleValue(100)));
Parameters.Add(new ValueParameter("StdDev (noise)", "Known error in y values. Used only be Reinsch Smoothing Splines", new DoubleValue(0.1)));
Problem = new RegressionProblem();
}
protected override void Run(CancellationToken cancellationToken) {
double[,] inputMatrix = Problem.ProblemData.Dataset.ToArray(Problem.ProblemData.AllowedInputVariables.Concat(new string[] { Problem.ProblemData.TargetVariable }), Problem.ProblemData.TrainingIndices);
if (inputMatrix.Cast().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
throw new NotSupportedException("Splines does not support NaN or infinity values in the input dataset.");
var inputVars = Problem.ProblemData.AllowedInputVariables.ToArray();
if (inputVars.Length > 3) throw new ArgumentException();
var y = Problem.ProblemData.TargetVariableTrainingValues.ToArray();
if (inputVars.Length == 1) {
var x = Problem.ProblemData.Dataset.GetDoubleValues(inputVars.First(), Problem.ProblemData.TrainingIndices).ToArray();
alglib.spline1dinterpolant c;
var type = ((StringValue)Parameters["Type"].ActualValue).Value;
switch (type) {
case "Smoothing Spline (Reinsch)": {
CalculateSmoothingSplineReinsch(x, y, inputVars);
break;
}
case "Smoothing Spline (Reinsch with automatic tolerance determination using LOOCV)": {
double optTol, looRMSE;
var model = CalculateSmoothingSplineReinsch(x, y, inputVars, Problem.ProblemData.TargetVariable, out optTol, out looRMSE);
Results.Add(new Result("Solution", model.CreateRegressionSolution((IRegressionProblemData)Problem.ProblemData.Clone())));
Results.Add(new Result("Optimal tolerance", new DoubleValue(optTol)));
Results.Add(new Result("RMSE (LOO-CV)", new DoubleValue(looRMSE)));
break;
}
case "CUBGCV": {
CubicSplineGCV.CubGcvReport report;
var model =
CubicSplineGCV.CalculateCubicSpline(x, y,
Problem.ProblemData.TargetVariable, inputVars, out report);
var targetVar = Problem.ProblemData.TargetVariable;
var problemData = (IRegressionProblemData)Problem.ProblemData.Clone();
Results.Add(new Result("Solution", model.CreateRegressionSolution(problemData)));
Results.Add(new Result("GCV", new DoubleValue(report.generalizedCrossValidation)));
Results.Add(new Result("Estimated error variance", new DoubleValue(report.estimatedErrorVariance)));
Results.Add(new Result("Estimated RSS degrees of freedom", new DoubleValue(report.estimatedRSSDegreesOfFreedom)));
Results.Add(new Result("Estimated true mean squared error at data points", new DoubleValue(report.estimatedTrueMeanSquaredErrorAtDataPoints)));
Results.Add(new Result("Mean square of DF", new DoubleValue(report.meanSquareOfDf)));
Results.Add(new Result("Mean square residual", new DoubleValue(report.meanSquareResiudal)));
Results.Add(new Result("Smoothing parameter (optimized for GCV)", new DoubleValue(report.smoothingParameter)));
break;
}
case "Finnbar O'Sullivan (sbart)": {
SBART.SBART_Report report;
var model =
SBART.CalculateSBART(x, y,
Problem.ProblemData.TargetVariable, inputVars, out report);
var targetVar = Problem.ProblemData.TargetVariable;
var problemData = (IRegressionProblemData)Problem.ProblemData.Clone();
Results.Add(new Result("Solution", model.CreateRegressionSolution(problemData)));
Results.Add(new Result("GCV", new DoubleValue(report.gcv)));
Results.Add(new Result("Smoothing parameter (optimized for GCV)", new DoubleValue(report.smoothingParameter)));
break;
}
case "Penalized Regression Spline (alglib)": {
var lambda = ((IValueParameter)Parameters["Lambda"]).Value.Value; // controls extent of smoothing
var model = CalculatePenalizedRegressionSpline(x, y, lambda, x.Length, Problem.ProblemData.TargetVariable, inputVars);
var targetVar = Problem.ProblemData.TargetVariable;
var problemData = (IRegressionProblemData)Problem.ProblemData.Clone();
Results.Add(new Result("Solution", model.CreateRegressionSolution(problemData)));
break;
}
default: throw new NotSupportedException();
}
}
}
public static IRegressionModel CalculatePenalizedRegressionSpline(double[] x, double[] y, double lambda, int numKnots, string targetVar, string[] inputVars) {
int info;
alglib.spline1dinterpolant interpolant;
alglib.spline1dfitreport rep;
alglib.spline1dfitpenalized(x, y, numKnots, lambda, out info, out interpolant, out rep);
return new Spline1dModel(interpolant, targetVar, inputVars);
}
public static IRegressionEnsembleModel CalculatePenalizedRegressionSpline(double[] x, double[] y, double lambda, string targetVar, string[] inputVars,
out double avgTrainRMSE,
out double cvRMSE, out double[] predictions) {
int info;
alglib.spline1dinterpolant interpolant;
alglib.spline1dfitreport rep;
int n = x.Length;
n = (int)Math.Max(50, 3 * Math.Sqrt(n));
int folds = 10;
int foldSize = x.Length <= 30 ? 1 : x.Length / folds;
if (foldSize == 1) folds = x.Length;
double[] x_loo = new double[(folds - 1) * foldSize];
double[] y_loo = new double[(folds - 1) * foldSize];
double[] w_loo = Enumerable.Repeat(1.0, x_loo.Length).ToArray();
var models = new List();
var sumTrainSE = 0.0;
int nTrain = 0;
var sumTestSE = 0.0;
int nTest = 0;
predictions = new double[y.Length];
for (int i = 0; i < folds; i++) {
if (i < folds - 1) {
//Console.WriteLine("Copy from {0} to {1} n = {2}", (i + 1) * foldSize, i * foldSize, (folds - i - 1) * foldSize);
Array.Copy(x, (i + 1) * foldSize, x_loo, i * foldSize, (folds - i - 1) * foldSize);
Array.Copy(y, (i + 1) * foldSize, y_loo, i * foldSize, (folds - i - 1) * foldSize);
}
alglib.spline1dfitpenalizedw(x_loo, y_loo, w_loo, n, lambda, out info, out interpolant, out rep);
//Debug.Assert(y_loo.All(yi => yi != 0.0));
//Debug.Assert(x_loo.All(xi => xi != 0.0));
// training error
for (int j = 0; j < x_loo.Length; j++) {
var y_pred = alglib.spline1dcalc(interpolant, x[j]);
double res = y[j] - y_pred;
sumTrainSE += res * res;
nTrain++;
}
// test
for (int j = i * foldSize; j < (i + 1) * foldSize; j++) {
predictions[j] = alglib.spline1dcalc(interpolant, x[j]);
double res = y[j] - predictions[j];
sumTestSE += res * res;
nTest++;
}
models.Add(new Spline1dModel(interpolant, targetVar, inputVars));
if (i < folds - 1) {
//Console.WriteLine("Copy from {0} to {1} n = {2}", i * foldSize, i * foldSize, foldSize);
// add current fold for next iteration
Array.Copy(x, i * foldSize, x_loo, i * foldSize, foldSize);
Array.Copy(y, i * foldSize, y_loo, i * foldSize, foldSize);
}
}
cvRMSE = Math.Sqrt(sumTestSE / nTest);
avgTrainRMSE = Math.Sqrt(sumTrainSE / nTrain);
return new RegressionEnsembleModel(models);
}
private struct SplineData {
public double a, b, c, d, x, y;
};
/*
* The procedure Quincunx, takes as arguments
the vectors u, v and w which are respectively the diagonal, the first supradiagonal
and the second supradiagonal of the banded matrix. The vector on
the LHS of the equation (80) is placed in q which contains the solution on the
completion of the procedure.
*/
private void Quincunx(int n, MyArray u, MyArray v, MyArray w, MyArray q) {
// { factorisation}
u[-1] = 0;
u[0] = 0;
for (int j = 1; j <= n - 1; j++) {
u[j] = u[j] - u[j - 2] * Math.Pow(w[j - 2], 2) - u[j - 1] * Math.Pow(v[j - 1], 2);
v[j] = (v[j] - u[j - 1] * v[j - 1] * w[j - 1]) / u[j];
w[j] = w[j] / u[j];
}
// { forward substitution}
for (int j = 1; j <= n - 1; j++) {
q[j] = q[j] - v[j - 1] * q[j - 1] - w[j - 2] * q[j - 2];
}
for (int j = 1; j < n - 1; j++) {
q[j] = q[j] / u[j];
}
// { back substitution}
q[n + 1] = 0;
q[n] = 0;
for (int j = n - 1; j >= 1; j--) {
q[j] = q[j] - v[j] * q[j + 1] - w[j] * q[j + 2];
}
}
public void CalculateSmoothingSplineReinsch(double[] x, double[] y, string[] inputVars) {
double s = x.Length + 1;
double stdTol = ((IValueParameter)Parameters["StdDev (noise)"]).Value.Value; // controls extent of smoothing
var model = CalculateSmoothingSplineReinsch(x, y, inputVars, stdTol, s, Problem.ProblemData.TargetVariable);
Results.Add(new Result("Solution", model.CreateRegressionSolution((IRegressionProblemData)Problem.ProblemData.Clone())));
}
public static IRegressionEnsembleModel CalculateSmoothingSplineReinsch(double[] x, double[] y, double tol, string targetVar, string[] inputVars,
out double avgTrainRMSE,
out double cvRMSE) {
int info;
int folds = 10;
int foldSize = x.Length <= 30 ? 1 : x.Length / folds;
if (foldSize == 1) folds = x.Length;
double[] x_loo = new double[(folds - 1) * foldSize];
double[] y_loo = new double[(folds - 1) * foldSize];
var models = new List();
var sumTrainSE = 0.0;
int nTrain = 0;
var sumTestSE = 0.0;
int nTest = 0;
for (int i = 0; i < folds; i++) {
if (i < folds - 1) {
Array.Copy(x, (i + 1) * foldSize, x_loo, i * foldSize, x.Length - ((i + 1) * foldSize) - 1);
Array.Copy(y, (i + 1) * foldSize, y_loo, i * foldSize, y.Length - ((i + 1) * foldSize) - 1);
}
var model = CalculateSmoothingSplineReinsch(x_loo, y_loo, inputVars, tol, ((folds - 1) * foldSize) - 1, targetVar);
// training error
for(int j = 0;j minTolerance) {
double curCVRMSE;
double avgTrainRmse;
var model = Splines.CalculateSmoothingSplineReinsch(
x, y, tol, targetVar, inputVars, out avgTrainRmse, out curCVRMSE);
if (curCVRMSE < cvRMSE) {
cvRMSE = curCVRMSE;
optTolerance = tol;
bestModel = model;
}
tol *= 0.85;
}
return bestModel;
}
public static ReinschSmoothingSplineModel CalculateSmoothingSplineReinsch(double[] xOrig, double[] yOrig, string[] inputVars, double stdTol, double s, string targetVar) {
var minX = xOrig.Min();
var maxX = xOrig.Max();
var range = maxX - minX;
double[] w = Enumerable.Repeat(stdTol, xOrig.Length).ToArray();
SortAndBin((double[])xOrig.Clone(), (double[])yOrig.Clone(), w, out xOrig, out yOrig, out w, scaling: false);
// See Smoothing by Spline Functions, Reinsch, 1967
// move x and y into an array indexed with 1..n to match indexing in Reinsch paper
int n = xOrig.Length;
var x = new MyArray(1, xOrig);
var y = new MyArray(1, yOrig);
var inv_dy = new MyArray(1, w);
int n1 = 1;
int n2 = n;
// results
var a = new MyArray(n1, n);
var b = new MyArray(n1, n);
var c = new MyArray(n1, n);
var d = new MyArray(n1, n);
// smooth
{
int i, m1, m2; double e, f, f2, g = 0.0, h, p;
MyArray
r = new MyArray(n1 - 1, n + 2),
r1 = new MyArray(n1 - 1, n + 2),
r2 = new MyArray(n1 - 1, n + 2),
t = new MyArray(n1 - 1, n + 2),
t1 = new MyArray(n1 - 1, n + 2),
u = new MyArray(n1 - 1, n + 2),
v = new MyArray(n1 - 1, n + 2);
m1 = n1 - 1;
m2 = n2 + 1;
r[m1] = r[n1] = r1[n2] = r2[n2] = r2[m2] =
u[m1] = u[n1] = u[n2] = u[m2] = p = 0.0;
m1 = n1 + 1;
m2 = n2 - 1;
h = x[m1] - x[n1]; f = (y[m1] - y[n1]) / h;
for (i = m1; i <= m2; i++) {
g = h; h = x[i + 1] - x[i];
e = f; f = (y[i + 1] - y[i]) / h;
a[i] = f - e; t[i] = 2 * (g + h) / 3; t1[i] = h / 3;
r2[i] = inv_dy[i - 1] / g; r[i] = inv_dy[i + 1] / h;
r1[i] = -inv_dy[i] / g - inv_dy[i] / h;
}
for (i = m1; i <= m2; i++) {
b[i] = r[i] * r[i] + r1[i] * r1[i] + r2[i] * r2[i];
c[i] = r[i] * r1[i + 1] + r1[i] * r2[i + 1];
d[i] = r[i] * r2[i + 2];
}
f2 = -s;
next:
for (i = m1; i <= m2; i++) {
r1[i - 1] = f * r[i - 1]; r2[i - 2] = g * r[i - 2];
r[i] = 1 / (p * b[i] + t[i] - f * r1[i - 1] - g * r2[i - 2]);
u[i] = a[i] - r1[i - 1] * u[i - 1] - r2[i - 2] * u[i - 2];
f = p * c[i] + t1[i] - h * r1[i - 1]; g = h; h = d[i] * p;
}
for (i = m2; i >= m1; i--) {
u[i] = r[i] * u[i] - r1[i] * u[i + 1] - r2[i] * u[i + 2];
}
e = h = 0;
for (i = n1; i <= m2; i++) {
g = h; h = (u[i + 1] - u[i]) / (x[i + 1] - x[i]);
v[i] = (h - g) * inv_dy[i] * inv_dy[i]; e = e + v[i] * (h - g);
}
g = v[n2] = -h * inv_dy[n2] * inv_dy[n2]; e = e - g * h;
g = f2; f2 = e * p * p;
if (f2 >= s || f2 <= g) goto fin;
f = 0; h = (v[m1] - v[n1]) / (x[m1] - x[n1]);
for (i = m1; i <= m2; i++) {
g = h; h = (v[i + 1] - v[i]) / (x[i + 1] - x[i]);
g = h - g - r1[i - 1] * r[i - 1] - r2[i - 2] * r[i - 2];
f = f + g * r[i] * g; r[i] = g;
}
h = e - p * f; if (h <= 0) goto fin;
p = p + (s - f2) / ((Math.Sqrt(s / e) + p) * h); goto next;
fin:
for (i = n1; i <= n2; i++) {
a[i] = y[i] - p * v[i];
c[i] = u[i];
}
for (i = n1; i <= m2; i++) {
h = x[i + 1] - x[i];
d[i] = (c[i + 1] - c[i]) / (3 * h);
b[i] = (a[i + 1] - a[i]) / h - (h * d[i] + c[i]) * h;
}
}
// extrapolate for xx > x[n2]
b[b.Length] = b[b.Length - 1];
d[1] = 0;
return new ReinschSmoothingSplineModel(a, b, c, d, x, targetVar, inputVars);
}
public static void SortAndBin(double[] x, double[] y, double[] w, out double[] x2, out double[] y2, out double[] w2, bool scaling = false) {
var sortedIdx = Enumerable.Range(0, x.Length).ToArray();
// sort by x
Array.Sort(x, sortedIdx);
var xl = new List();
var yl = new List();
var wl = new List();
int n = x.Length;
var range = x[n - 1] - x[0];
var binSize = range / n / 10;
{
// binning
int i = 0;
while (i < n) {
int k = 0;
int j = i;
double sumX = 0.0;
double sumY = 0.0;
double sumW = 0.0;
while (j < n && x[j] - x[i] <= binSize) {
k++;
sumX += x[j];
sumY += y[sortedIdx[j]];
sumW += w[sortedIdx[j]];
j++;
}
var avgX = sumX / k;
if (scaling) avgX = (avgX - x[0]) / range;
xl.Add(avgX);
yl.Add(sumY / k);
wl.Add(sumW);
i += k;
}
}
x2 = xl.ToArray();
y2 = yl.ToArray();
w2 = wl.ToArray();
}
}
// array with non-zero lower index
internal class MyArray {
private T[] arr;
private int lowerBound;
public int Length { get { return arr.Length; } }
public T this[int key] {
get {
return arr[key - lowerBound];
}
set {
arr[key - lowerBound] = value;
}
}
public MyArray(int lowerBound, int numElements) {
this.lowerBound = lowerBound;
arr = new T[numElements];
}
public MyArray(int lowerBound, T[] source) : this(lowerBound, source.Length) {
Array.Copy(source, arr, source.Length);
}
public T[] ToArray() {
var res = new T[arr.Length];
Array.Copy(arr, res, res.Length);
return res;
}
}
// UNFINISHED
public class ReinschSmoothingSplineModel : NamedItem, IRegressionModel {
private MyArray a;
private MyArray b;
private MyArray c;
private MyArray d;
private MyArray x;
private double offset;
private double scale;
public string TargetVariable { get; set; }
public IEnumerable VariablesUsedForPrediction { get; private set; }
public event EventHandler TargetVariableChanged;
public ReinschSmoothingSplineModel(ReinschSmoothingSplineModel orig, Cloner cloner) : base(orig, cloner) {
this.TargetVariable = orig.TargetVariable;
this.VariablesUsedForPrediction = orig.VariablesUsedForPrediction.ToArray();
this.a = orig.a;
this.b = orig.b;
this.c = orig.c;
this.d = orig.d;
this.x = orig.x;
this.scale = orig.scale;
this.offset = orig.offset;
}
internal ReinschSmoothingSplineModel(
MyArray a,
MyArray b,
MyArray c,
MyArray d,
MyArray x,
string targetVar, string[] inputs, double offset = 0, double scale = 1) : base("SplineModel", "SplineModel") {
this.a = a;
this.b = b;
this.c = c;
this.d = d;
this.x = x;
this.TargetVariable = targetVar;
this.VariablesUsedForPrediction = inputs;
this.scale = scale;
this.offset = offset;
}
public override IDeepCloneable Clone(Cloner cloner) {
return new ReinschSmoothingSplineModel(this, cloner);
}
public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
return new RegressionSolution(this, (IRegressionProblemData)problemData.Clone());
}
public double GetEstimatedValue(double xx) {
xx = (xx - offset) * scale;
int n = a.Length;
if (xx <= x[1]) {
double h = xx - x[1];
return a[1] + h * (b[1] + h * (c[1] + h * d[1]));
} else if (xx >= x[n]) {
double h = xx - x[n];
return a[n] + h * (b[n] + h * (c[n] + h * d[n]));
} else {
// binary search
int lower = 1;
int upper = n;
while (true) {
if (upper < lower) throw new InvalidProgramException();
int i = lower + (upper - lower) / 2;
if (x[i] <= xx && xx < x[i + 1]) {
double h = xx - x[i];
return a[i] + h * (b[i] + h * (c[i] + h * d[i]));
} else if (xx < x[i]) {
upper = i - 1;
} else {
lower = i + 1;
}
}
}
}
public IEnumerable GetEstimatedValues(IDataset dataset, IEnumerable rows) {
int n = x.Length;
var product = dataset.GetDoubleValues(VariablesUsedForPrediction.First(), rows).ToArray();
foreach (var factor in VariablesUsedForPrediction.Skip(1)) {
product = product.Zip(dataset.GetDoubleValues(factor, rows), (pi, fi) => pi * fi).ToArray();
}
foreach (var xx in product) {
yield return GetEstimatedValue(xx);
}
}
}
// UNFINISHED
public class Spline1dModel : NamedItem, IRegressionModel {
alglib.spline1dinterpolant interpolant;
public string TargetVariable { get; set; }
public IEnumerable VariablesUsedForPrediction { get; private set; }
public event EventHandler TargetVariableChanged;
public Spline1dModel(Spline1dModel orig, Cloner cloner) : base(orig, cloner) {
this.TargetVariable = orig.TargetVariable;
this.VariablesUsedForPrediction = orig.VariablesUsedForPrediction.ToArray();
this.interpolant = (alglib.spline1dinterpolant)orig.interpolant.make_copy();
}
public Spline1dModel(
alglib.spline1dinterpolant interpolant,
string targetVar, string[] inputs, double offset = 0, double scale = 1) : base("SplineModel", "SplineModel") {
this.interpolant = (alglib.spline1dinterpolant)interpolant.make_copy();
this.TargetVariable = targetVar;
this.VariablesUsedForPrediction = inputs;
}
public override IDeepCloneable Clone(Cloner cloner) {
return new Spline1dModel(this, cloner);
}
public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
return new RegressionSolution(this, (IRegressionProblemData)problemData.Clone());
}
public double GetEstimatedValue(double xx) {
return alglib.spline1dcalc(interpolant, xx);
}
public IEnumerable GetEstimatedValues(IDataset dataset, IEnumerable rows) {
var product = dataset.GetDoubleValues(VariablesUsedForPrediction.First(), rows).ToArray();
foreach (var factor in VariablesUsedForPrediction.Skip(1)) {
product = product.Zip(dataset.GetDoubleValues(factor, rows), (pi, fi) => pi * fi).ToArray();
}
foreach (var xx in product) {
yield return GetEstimatedValue(xx);
}
}
}
}