#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HEAL.Attic;
using HeuristicLab.Algorithms.DataAnalysis;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.RealVectorEncoding;
// ReSharper disable once CheckNamespace
namespace HeuristicLab.Algorithms.EGO {
[StorableType("96160d45-3abb-460b-aa31-c00204c1e914")]
[Item("NeighbourDistance", "Exploration by maximizing the distance to the nearest neighbour")]
public class NeighbourDistance : InfillCriterionBase {
private VantagePointTree> Points;
#region Constructors, Serialization and Cloning
[StorableConstructor]
protected NeighbourDistance(StorableConstructorFlag deserializing) : base(deserializing) { }
protected NeighbourDistance(NeighbourDistance original, Cloner cloner) : base(original, cloner) { }
public NeighbourDistance() { }
public override IDeepCloneable Clone(Cloner cloner) { return new NeighbourDistance(this, cloner); }
#endregion
public override double Evaluate(RealVector vector) {
if (Points == null) Points = CreateTree();
IList> neighbours;
IList distances;
Points.Search(vector, 1, out neighbours, out distances);
return distances[0];
}
public override void Initialize() {
Points = CreateTree();
}
private VantagePointTree> CreateTree() {
var data = RegressionSolution.ProblemData.Dataset;
var rows = RegressionSolution.ProblemData.AllIndices;
var cols = RegressionSolution.ProblemData.AllowedInputVariables;
return new VantagePointTree>(new EuclideanDistance(), rows.Select(r => cols.Select(c => data.GetDoubleValue(c, r)).ToArray()));
}
}
}