#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.IntegerVectorEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Algorithms.EGO {
[Item("DiscreteSampleCollector", "Collects IntegerVectors into a modifiablbe dataset")]
[StorableClass]
public class DiscreteSampleCollector : InstrumentedOperator {
public override bool CanChangeName => true;
public ILookupParameter IntegerVectorParameter => (ILookupParameter)Parameters["IntegerVector"];
public ILookupParameter QualityParameter => (ILookupParameter)Parameters["Quality"];
public ILookupParameter DatasetParameter => (ILookupParameter)Parameters["Dataset"];
[StorableConstructor]
protected DiscreteSampleCollector(bool deserializing) : base(deserializing) { }
protected DiscreteSampleCollector(DiscreteSampleCollector original, Cloner cloner) : base(original, cloner) { }
public DiscreteSampleCollector() {
Parameters.Add(new LookupParameter("IntegerVector", "The vector which should be collected."));
Parameters.Add(new LookupParameter("Quality", "The quality associated which this vector"));
Parameters.Add(new LookupParameter("Dataset", "The Dataset in wich new samples are stored."));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new DiscreteSampleCollector(this, cloner);
}
public sealed override IOperation InstrumentedApply() {
var vector = IntegerVectorParameter.ActualValue;
var quality = QualityParameter.ActualValue.Value;
var data = DatasetParameter.ActualValue;
if (data.Columns != vector.Length + 1) {
if (data.Columns != 0 || data.Rows != 0) throw new OperatorExecutionException(this, "dataset columns do not match samplesize+1");
var variableNames = vector.Select((x, i) => string.Format("input" + i)).Concat("output".ToEnumerable());
var variableValues = vector.Select(x => (double)x).Concat(quality.ToEnumerable()).Select(x => new List { x });
data = DatasetParameter.ActualValue = new ModifiableDataset(variableNames, variableValues);
} else AddRow(data, vector, quality);
return base.InstrumentedApply();
}
private static void AddRow(ModifiableDataset data, IntegerVector vector, double quality) {
var row = new object[vector.Length + 1];
for (var i = 0; i < vector.Length; i++)
row[i] = (double)vector[i];
row[vector.Length] = quality;
data.AddRow(row);
}
}
}