#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.PermutationEncoding; using HeuristicLab.Optimization.Operators; using HeuristicLab.PluginInfrastructure; namespace HeuristicLab.Problems.TravelingSalesman { /// /// An operator that performs similarity calculation between two traveling salesman solutions. /// /// /// The operator calculates the similarity based on the number of edges the two solutions have in common. /// [Item("TSPSimilarityCalculator", "An operator that performs similarity calculation between two traveling salesman solutions. The operator calculates the similarity based on the number of edges the two solutions have in common.")] [Obsolete("Please use the HammingSimilarityCalculator in the Encodings.PermutationEncoding plugin.")] [NonDiscoverableType] internal sealed class TSPSimilarityCalculator : SingleObjectiveSolutionSimilarityCalculator { protected override bool IsCommutative { get { return true; } } private TSPSimilarityCalculator(bool deserializing) : base(deserializing) { } private TSPSimilarityCalculator(TSPSimilarityCalculator original, Cloner cloner) : base(original, cloner) { } public TSPSimilarityCalculator() : base() { } public override IDeepCloneable Clone(Cloner cloner) { return new TSPSimilarityCalculator(this, cloner); } public static double CalculateSimilarity(Permutation left, Permutation right) { if (left == null || right == null) throw new ArgumentException("Cannot calculate similarity because one of the provided solutions or both are null."); if (left.PermutationType != right.PermutationType) throw new ArgumentException("Cannot calculate similarity because the provided solutions have different types."); if (left.Length != right.Length) throw new ArgumentException("Cannot calculate similarity because the provided solutions have different lengths."); if (object.ReferenceEquals(left, right)) return 1.0; switch (left.PermutationType) { case PermutationTypes.Absolute: return CalculateAbsolute(left, right); case PermutationTypes.RelativeDirected: return CalculateRelativeDirected(left, right); case PermutationTypes.RelativeUndirected: return CalculateRelativeUndirected(left, right); default: throw new InvalidOperationException("unknown permutation type"); } } private static double CalculateAbsolute(Permutation left, Permutation right) { double similarity = 0.0; for (int i = 0; i < left.Length; i++) if (left[i] == right[i]) similarity++; return similarity / left.Length; } private static double CalculateRelativeDirected(Permutation left, Permutation right) { int[] edgesR = CalculateEdgesVector(right); int[] edgesL = CalculateEdgesVector(left); double similarity = 0.0; for (int i = 0; i < left.Length; i++) { if (edgesL[i] == edgesR[i]) similarity++; } return similarity / left.Length; } private static double CalculateRelativeUndirected(Permutation left, Permutation right) { int[] edgesR = CalculateEdgesVector(right); int[] edgesL = CalculateEdgesVector(left); double similarity = 0.0; for (int i = 0; i < left.Length; i++) { if ((edgesL[i] == edgesR[i]) || (edgesL[edgesR[i]] == i)) similarity++; } return similarity / left.Length; } private static int[] CalculateEdgesVector(Permutation permutation) { // transform path representation into adjacency representation int[] edgesVector = new int[permutation.Length]; for (int i = 0; i < permutation.Length - 1; i++) edgesVector[permutation[i]] = permutation[i + 1]; edgesVector[permutation[permutation.Length - 1]] = permutation[0]; return edgesVector; } public override double CalculateSolutionSimilarity(IScope leftSolution, IScope rightSolution) { var sol1 = leftSolution.Variables[SolutionVariableName].Value as Permutation; var sol2 = rightSolution.Variables[SolutionVariableName].Value as Permutation; return CalculateSimilarity(sol1, sol2); } } }