#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.PermutationEncoding; using HeuristicLab.Optimization; using HeuristicLab.Optimization.Operators; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.Instances; namespace HeuristicLab.Problems.QuadraticAssignment { [Item("Basic Quadratic Assignment Problem (QAP)", "The Quadratic Assignment Problem (QAP) can be described as the problem of assigning N facilities to N fixed locations such that there is exactly one facility in each location and that the sum of the distances multiplied by the connection strength between the facilities becomes minimal.")] [Creatable(CreatableAttribute.Categories.CombinatorialProblems, Priority = 141)] [StorableClass] public sealed class QAPBasicProblem : SingleObjectiveBasicProblem, IProblemInstanceConsumer, IProblemInstanceConsumer { [Storable] private IValueParameter weightsParameter; public DoubleMatrix Weights { get { return weightsParameter.Value; } set { weightsParameter.Value = value; } } [Storable] private IValueParameter distancesParameter; public DoubleMatrix Distances { get { return distancesParameter.Value; } set { distancesParameter.Value = value; } } [StorableConstructor] private QAPBasicProblem(bool deserializing) : base(deserializing) { } private QAPBasicProblem(QAPBasicProblem original, Cloner cloner) : base(original, cloner) { weightsParameter = cloner.Clone(original.weightsParameter); distancesParameter = cloner.Clone(original.distancesParameter); } public QAPBasicProblem() { Parameters.Add(weightsParameter = new ValueParameter("Weights", "The weights matrix.", new DoubleMatrix(5, 5))); Parameters.Add(distancesParameter = new ValueParameter("Distances", "The distances matrix.", new DoubleMatrix(5, 5))); Operators.Add(new HammingSimilarityCalculator()); Operators.Add(new QualitySimilarityCalculator()); Operators.Add(new PopulationSimilarityAnalyzer(Operators.OfType())); Parameterize(); } public override IDeepCloneable Clone(Cloner cloner) { return new QAPBasicProblem(this, cloner); } protected override void OnEncodingChanged() { base.OnEncodingChanged(); Parameterize(); } private void Parameterize() { foreach (var similarityCalculator in Operators.OfType()) { similarityCalculator.SolutionVariableName = Encoding.SolutionCreator.PermutationParameter.ActualName; similarityCalculator.QualityVariableName = Evaluator.QualityParameter.ActualName; } } public override bool Maximization { get { return false; } } public override double Evaluate(Individual individual, IRandom random) { return QAPEvaluator.Apply(individual.Permutation(), Weights, Distances); } public void Load(QAPData data) { var weights = new DoubleMatrix(data.Weights); var distances = new DoubleMatrix(data.Distances); Name = data.Name; Description = data.Description; Load(weights, distances); if (data.BestKnownQuality.HasValue) BestKnownQuality = data.BestKnownQuality.Value; EvaluateAndLoadAssignment(data.BestKnownAssignment); OnReset(); } public void Load(TSPData data) { if (data.Dimension > 1000) throw new System.IO.InvalidDataException("Instances with more than 1000 customers are not supported by the QAP."); var weights = new DoubleMatrix(data.Dimension, data.Dimension); for (int i = 0; i < data.Dimension; i++) weights[i, (i + 1) % data.Dimension] = 1; var distances = new DoubleMatrix(data.GetDistanceMatrix()); Name = data.Name; Description = data.Description; Load(weights, distances); if (data.BestKnownQuality.HasValue) BestKnownQuality = data.BestKnownQuality.Value; EvaluateAndLoadAssignment(data.BestKnownTour); OnReset(); } public void Load(DoubleMatrix weights, DoubleMatrix distances) { if (weights == null || weights.Rows == 0) throw new System.IO.InvalidDataException("The given instance does not contain weights!"); if (weights.Rows != weights.Columns) throw new System.IO.InvalidDataException("The weights matrix is not a square matrix!"); if (distances == null || distances.Rows == 0) throw new System.IO.InvalidDataException("The given instance does not contain distances!"); if (distances.Rows != distances.Columns) throw new System.IO.InvalidDataException("The distances matrix is not a square matrix!"); if (weights.Rows != distances.Columns) throw new System.IO.InvalidDataException("The weights matrix and the distance matrix are not of equal size!"); Weights = weights; Distances = distances; Encoding.Length = Weights.Rows; BestKnownQuality = double.NaN; } public void EvaluateAndLoadAssignment(int[] assignment) { if (assignment == null || assignment.Length == 0) return; var vector = new Permutation(PermutationTypes.Absolute, assignment); var result = QAPEvaluator.Apply(vector, Weights, Distances); BestKnownQuality = result; } } }