#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Encodings.LinearLinkageEncoding { [Item("LinearLinkage", "Represents an LLE grouping of items.")] [StorableClass] public sealed class LinearLinkage : IntArray { [StorableConstructor] private LinearLinkage(bool deserializing) : base(deserializing) { } private LinearLinkage(LinearLinkage original, Cloner cloner) : base(original, cloner) { } public LinearLinkage() { } private LinearLinkage(int length) : base(length) { } private LinearLinkage(int[] elements) : base(elements) { } /// /// Create a new LinearLinkage object where every element is in a seperate group. /// public static LinearLinkage SingleElementGroups(int length) { var elements = new int[length]; for (var i = 0; i < length; i++) { elements[i] = i; } return new LinearLinkage(elements); } /// /// Create a new LinearLinkage object from an int[] in LLE /// /// /// This operation checks if the argument is a well formed LLE /// and throws an ArgumentException otherwise. /// /// If does not represent a valid LLE array. /// The LLE representation /// The linear linkage encoding in LLE format (with forward-links). public static LinearLinkage FromForwardLinks(int[] lle) { if (!Validate(lle)) throw new ArgumentException("Array is malformed and does not represent a valid LLE forward encoding.", "elements"); return new LinearLinkage(lle); } /// /// Create a new LinearLinkage object by parsing a LLE-b representation /// and modifing the underlying array so that it is in LLE representation. /// /// /// This operation runs in O(n) time, the parameter is not modified. /// /// If does not represent a valid LLE-b array. /// The LLE-b representation (LLE with back-links) /// The linear linkage encoding in LLE format (with forward-links). public static LinearLinkage FromBackLinks(int[] lleb) { var result = new LinearLinkage(lleb.Length); for (var i = lleb.Length - 1; i > 0; i--) { if (lleb[i] == i) { if (result[i] == 0) result[i] = i; continue; } result[lleb[i]] = i; if (result[i] == 0) result[i] = i; } if (!Validate(result.array)) throw new ArgumentException("Array is malformed and does not represent a valid LLE-b encoding (with back-links).", "lleb"); return result; } /// /// Create a new LinearLinkage object by parsing an LLE-e representation /// and modifing the underlying array so that it is in LLE representation. /// /// /// This operation runs in O(n) time, but requires additional memory /// in form of a int[]. /// /// The LLE-e representation /// The linear linkage encoding in LLE format (with forward-links). public static LinearLinkage FromEndLinks(int[] llee) { var result = new LinearLinkage(llee.Length); result.SetEndLinks(llee); return result; } /// /// Create a new LinearLinkage object by translating /// an enumeration of groups into the underlying array representation. /// /// /// Throws an ArgumentException when there is an element assigned to /// multiple groups or elements that are not assigned to any group. /// /// The grouping of the elements, each element must /// be part of exactly one group. public static LinearLinkage FromGroups(int length, IEnumerable> grouping) { var result = new LinearLinkage(length); result.SetGroups(grouping); return result; } public override IDeepCloneable Clone(Cloner cloner) { return new LinearLinkage(this, cloner); } /// /// This method parses the encoded array and calculates the membership of /// each element to the groups. It starts at the lowest element. /// /// /// Runtime complexity of this method is O(n) where n is the length of the /// array. /// /// If this object is not vaild LLE. /// An enumeration of all groups. public IEnumerable> GetGroups() { var len = array.Length; var used = new bool[len]; for (var i = 0; i < len; i++) { if (used[i]) continue; var curr = i; var next = array[curr]; var group = new List { curr }; while (next > curr && next < len && !used[next]) { used[curr] = true; curr = next; next = array[next]; group.Add(curr); } if (curr != next) throw new InvalidOperationException("Array is malformed and does not represent a valid LLE forward encoding."); used[curr] = true; yield return group; } } /// /// This method parses the encoded array and gathers all elements /// that belong to the same group as element . /// /// The element whose group should be returned. /// /// The element at and all other /// elements in the same group. public IEnumerable GetGroup(int index) { foreach (var n in GetGroupForward(index)) yield return n; // the element index has already been yielded foreach (var n in GetGroupBackward(index).Skip(1)) yield return n; } /// /// This method parses the encoded array and gathers the element /// as well as subsequent elements that /// belong to the same group. /// /// The element from which subsequent (having a /// larger number) elements in the group should be returned. /// /// The element and all subsequent /// elements in the same group. public IEnumerable GetGroupForward(int index) { yield return index; var next = array[index]; if (next == index) yield break; int prev; do { yield return next; prev = next; next = array[next]; } while (next != prev); } /// /// This method parses the encoded array and gathers the element /// given as well as preceeding elements that /// belong to the same group. /// /// /// Warning, this code has performance O(index) as the array has to /// be fully traversed backwards from the given index. /// /// The element from which preceeding (having a /// smaller number) elements in the group should be returned. /// /// The element and all preceeding /// elements in the same group. public IEnumerable GetGroupBackward(int index) { yield return index; var next = array[index]; // return preceding elements in group for (var prev = index - 1; prev >= 0; prev--) { if (array[prev] != next) continue; next = prev; yield return next; } } /// /// This method translates an enumeration of groups into the underlying /// array representation. /// /// /// Throws an ArgumentException when there is an element assigned to /// multiple groups or elements that are not assigned to any group. /// /// The grouping of the elements, each element must /// be part of exactly one group. /// If cannot be converted /// to a valid LLE representation. For instance, because elements are too big or too small, /// or they're contained in multiple groups, or there are elements not assigned to any group. /// public void SetGroups(IEnumerable> grouping) { var len = array.Length; var used = new bool[len]; foreach (var group in grouping) { var prev = -1; foreach (var g in group.OrderBy(x => x)) { if (g < prev || g >= len) throw new ArgumentException(string.Format("Element {0} is bigger than {1} or smaller than 0.", g, len - 1), "grouping"); if (prev >= 0) array[prev] = g; prev = g; if (used[prev]) { throw new ArgumentException(string.Format("Element {0} is contained at least twice.", prev), "grouping"); } used[prev] = true; } array[prev] = prev; } if (!used.All(x => x)) throw new ArgumentException(string.Format("Elements are not assigned a group: {0}", string.Join(", ", used.Select((x, i) => new { x, i }).Where(x => !x.x).Select(x => x.i)))); } /// /// Performs a check whether the array represents a valid LLE encoding. /// /// /// The runtime complexity of this method is O(n) where n is the length of /// the array. /// /// True if the encoding is valid. public bool Validate() { return Validate(array); } private static bool Validate(int[] array) { var len = array.Length; var used = new bool[len]; for (var i = 0; i < len; i++) { if (used[i]) continue; var curr = i; var next = array[curr]; while (next > curr && next < len && !used[next]) { used[curr] = true; curr = next; next = array[next]; } if (curr!=next) return false; used[curr] = true; } return true; } /// /// This method flattens tree structures that may be present in groups. /// These tree structures may be created by e.g. merging two groups by /// linking one end node to the end node of another. /// Consider following array: 5, 5, 6, 4, 4, 7, 7, 7, 8. /// This results in the following tree structure for group 7: /// 7 /// / \ /// 5 6 /// / \ | /// 0 1 2 /// After this operation the array will be 1, 2, 5, 4, 4, 6, 7, 7, 8. /// Representing a tree with one branch: 0 -> 1 -> 2 -> 5 -> 6 -> 7. /// /// /// The method first converts the array to LLE-e format and then /// linearizes the links. This requires two passes of the whole array /// as well as another copy of the underlying array. /// The runtime complexity is O(n). /// /// The method assumes that there are no back links present. /// public void LinearizeTreeStructures() { // Step 1: Convert the array into LLE-e ToEndLinksInplace(array); // Step 2: For all groups linearize the links SetEndLinks(array); } /// /// Creates a copy of the underlying array and turns it into LLE-e. /// /// /// LLE-e is a special format where each element points to the /// ending item of a group. /// The LLE representation 1, 2, 4, 5, 4, 6, 7, 7 would become /// 4, 4, 4, 7, 4, 7, 7, 7 in LLE-e. /// /// This operation runs in O(n) time. /// /// In case, this object does not /// represent a valid LLE encoding. /// /// An integer array in LLE-e representation public int[] ToEndLinks() { var result = (int[])array.Clone(); ToEndLinksInplace(result); return result; } private static void ToEndLinksInplace(int[] array) { var length = array.Length; for (var i = length - 1; i >= 0; i--) { var next = array[i]; if (next > i) { array[i] = array[next]; } else if (next < i) { throw new ArgumentException("Array is malformed and does not represent a valid LLE encoding.", "array"); } } } /// /// Parses an LLE-e representation and modifies the underlying array /// so that it is in LLE representation. /// /// /// This operation runs in O(n) time, but requires additional memory /// in form of a int[]. /// /// The LLE-e representation /// /// If does not contain a valid LLE-e representation or /// has a different length to the given instance. /// public void SetEndLinks(int[] llee) { var length = array.Length; if (length != llee.Length) { throw new ArgumentException(string.Format("Expected length {0} but length was {1}", length, llee.Length), "llee"); } // If we are ok with mutating llee we can avoid this clone var lookup = (int[])llee.Clone(); for (var i = length - 1; i >= 0; i--) { var end = llee[i]; if (end == i) { array[i] = end; } else if (end > i && end < length) { array[i] = lookup[end]; lookup[end] = i; } else { throw new ArgumentException("Array is malformed and does not represent a valid LLE-e end encoding.", "llee"); } } } /// /// Creates a copy of the underlying array and turns it into LLE-b. /// /// /// LLE-b is a special format where each element points to the /// predecessor instead of the successor. /// The LLE representation 1, 2, 4, 5, 4, 6, 7, 7 /// would become 0, 0, 1, 3, 2, 3, 5, 6 in LLE-b. /// /// This operation runs in O(n) time. /// /// An integer array in LLE-b representation public int[] ToBackLinks() { var result = new int[array.Length]; var zeroLink = array[0]; for (var i = 0; i < array.Length; i++) { if (array[i] == i) { if (result[i] == 0 && i != zeroLink) result[i] = i; continue; } result[array[i]] = i; if (result[i] == 0 && i != zeroLink) result[i] = i; } return result; } } }