#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Threading; using HeuristicLab.Algorithms.MemPR.Interfaces; using HeuristicLab.Algorithms.MemPR.Util; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.LinearLinkageEncoding; using HeuristicLab.Optimization; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.PluginInfrastructure; using HeuristicLab.Random; namespace HeuristicLab.Algorithms.MemPR.Grouping { [Item("MemPR (linear linkage)", "MemPR implementation for linear linkage vectors.")] [StorableClass] [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 999)] public class LinearLinkageMemPR : MemPRAlgorithm { [StorableConstructor] protected LinearLinkageMemPR(bool deserializing) : base(deserializing) { } protected LinearLinkageMemPR(LinearLinkageMemPR original, Cloner cloner) : base(original, cloner) { } public LinearLinkageMemPR() { foreach (var trainer in ApplicationManager.Manager.GetInstances>()) SolutionModelTrainerParameter.ValidValues.Add(trainer); if (SolutionModelTrainerParameter.ValidValues.Count > 0) { var unbiased = SolutionModelTrainerParameter.ValidValues.FirstOrDefault(x => !x.Bias); if (unbiased != null) SolutionModelTrainerParameter.Value = unbiased; } foreach (var localSearch in ApplicationManager.Manager.GetInstances>()) { LocalSearchParameter.ValidValues.Add(localSearch); } } public override IDeepCloneable Clone(Cloner cloner) { return new LinearLinkageMemPR(this, cloner); } protected override bool Eq(LinearLinkage a, LinearLinkage b) { if (a.Length != b.Length) return false; for (var i = 0; i < a.Length; i++) if (a[i] != b[i]) return false; return true; } protected override double Dist(ISingleObjectiveSolutionScope a, ISingleObjectiveSolutionScope b) { return Dist(a.Solution, b.Solution); } private double Dist(LinearLinkage a, LinearLinkage b) { return 1.0 - HammingSimilarityCalculator.CalculateSimilarity(a, b); } protected override ISolutionSubspace CalculateSubspace(IEnumerable solutions, bool inverse = false) { var pop = solutions.ToList(); var N = pop[0].Length; var subspace = new bool[N]; for (var i = 0; i < N; i++) { var val = pop[0][i]; if (inverse) subspace[i] = true; for (var p = 1; p < pop.Count; p++) { if (pop[p][i] != val) subspace[i] = !inverse; } } return new LinearLinkageSolutionSubspace(subspace); } protected override void AdaptiveWalk( ISingleObjectiveSolutionScope scope, int maxEvals, CancellationToken token, ISolutionSubspace sub_space = null) { var maximization = Context.Maximization; var subspace = sub_space is LinearLinkageSolutionSubspace ? ((LinearLinkageSolutionSubspace)sub_space).Subspace : null; var evaluations = 0; var quality = scope.Fitness; if (double.IsNaN(quality)) { Context.Evaluate(scope, token); quality = scope.Fitness; evaluations++; if (evaluations >= maxEvals) return; } var bestQuality = quality; var currentScope = (ISingleObjectiveSolutionScope)scope.Clone(); var current = currentScope.Solution; LinearLinkage bestOfTheWalk = null; var bestOfTheWalkF = double.NaN; var tabu = new double[current.Length, current.Length]; for (var i = 0; i < current.Length; i++) { for (var j = i; j < current.Length; j++) { tabu[i, j] = tabu[j, i] = maximization ? double.MinValue : double.MaxValue; } tabu[i, current[i]] = quality; } // this dictionary holds the last relevant links var groupItems = new List(); var lleb = current.ToBackLinks(); Move bestOfTheRest = null; var bestOfTheRestF = double.NaN; var lastAppliedMove = -1; for (var iter = 0; iter < int.MaxValue; iter++) { // clear the dictionary before a new pass through the array is made groupItems.Clear(); for (var i = 0; i < current.Length; i++) { if (subspace != null && !subspace[i]) { if (lleb[i] != i) groupItems.Remove(lleb[i]); groupItems.Add(i); continue; } var next = current[i]; if (lastAppliedMove == i) { if (bestOfTheRest != null) { bestOfTheRest.Apply(current); bestOfTheRest.ApplyToLLEb(lleb); currentScope.Fitness = bestOfTheRestF; quality = bestOfTheRestF; if (maximization) { tabu[i, next] = Math.Max(tabu[i, next], bestOfTheRestF); tabu[i, current[i]] = Math.Max(tabu[i, current[i]], bestOfTheRestF); } else { tabu[i, next] = Math.Min(tabu[i, next], bestOfTheRestF); tabu[i, current[i]] = Math.Min(tabu[i, current[i]], bestOfTheRestF); } if (FitnessComparer.IsBetter(maximization, bestOfTheRestF, bestOfTheWalkF)) { bestOfTheWalk = (LinearLinkage)current.Clone(); bestOfTheWalkF = bestOfTheRestF; } bestOfTheRest = null; bestOfTheRestF = double.NaN; lastAppliedMove = i; } else { lastAppliedMove = -1; } break; } else { foreach (var move in MoveGenerator.GenerateForItem(i, groupItems, current, lleb)) { // we intend to break link i -> next var qualityToBreak = tabu[i, next]; move.Apply(current); var qualityToRestore = tabu[i, current[i]]; // current[i] is new next Context.Evaluate(currentScope, token); evaluations++; var moveF = currentScope.Fitness; var isNotTabu = FitnessComparer.IsBetter(maximization, moveF, qualityToBreak) && FitnessComparer.IsBetter(maximization, moveF, qualityToRestore); var isImprovement = FitnessComparer.IsBetter(maximization, moveF, quality); var isAspired = FitnessComparer.IsBetter(maximization, moveF, bestQuality); if ((isNotTabu && isImprovement) || isAspired) { if (maximization) { tabu[i, next] = Math.Max(tabu[i, next], moveF); tabu[i, current[i]] = Math.Max(tabu[i, current[i]], moveF); } else { tabu[i, next] = Math.Min(tabu[i, next], moveF); tabu[i, current[i]] = Math.Min(tabu[i, current[i]], moveF); } quality = moveF; if (isAspired) bestQuality = quality; move.ApplyToLLEb(lleb); if (FitnessComparer.IsBetter(maximization, moveF, bestOfTheWalkF)) { bestOfTheWalk = (LinearLinkage)current.Clone(); bestOfTheWalkF = moveF; } bestOfTheRest = null; bestOfTheRestF = double.NaN; lastAppliedMove = i; break; } else { if (isNotTabu) { if (FitnessComparer.IsBetter(maximization, moveF, bestOfTheRestF)) { bestOfTheRest = move; bestOfTheRestF = moveF; } } move.Undo(current); currentScope.Fitness = quality; } if (evaluations >= maxEvals) break; } } if (lleb[i] != i) groupItems.Remove(lleb[i]); groupItems.Add(i); if (evaluations >= maxEvals) break; if (token.IsCancellationRequested) break; } if (lastAppliedMove == -1) { // no move has been applied if (bestOfTheRest != null) { var i = bestOfTheRest.Item; var next = current[i]; bestOfTheRest.Apply(current); currentScope.Fitness = bestOfTheRestF; quality = bestOfTheRestF; if (maximization) { tabu[i, next] = Math.Max(tabu[i, next], bestOfTheRestF); tabu[i, current[i]] = Math.Max(tabu[i, current[i]], bestOfTheRestF); } else { tabu[i, next] = Math.Min(tabu[i, next], bestOfTheRestF); tabu[i, current[i]] = Math.Min(tabu[i, current[i]], bestOfTheRestF); } if (FitnessComparer.IsBetter(maximization, bestOfTheRestF, bestOfTheWalkF)) { bestOfTheWalk = (LinearLinkage)current.Clone(); bestOfTheWalkF = bestOfTheRestF; } bestOfTheRest = null; bestOfTheRestF = double.NaN; } else break; } if (evaluations >= maxEvals) break; if (token.IsCancellationRequested) break; } if (bestOfTheWalk != null) { scope.Solution = bestOfTheWalk; scope.Fitness = bestOfTheWalkF; } } protected override ISingleObjectiveSolutionScope Breed(ISingleObjectiveSolutionScope p1, ISingleObjectiveSolutionScope p2, CancellationToken token) { var cache = new HashSet(new LinearLinkageEqualityComparer()); cache.Add(p1.Solution); cache.Add(p2.Solution); var cacheHits = new Dictionary() { { 0, 0 }, { 1, 0 } }; var evaluations = 0; var probe = Context.ToScope((LinearLinkage)p1.Solution.Clone()); ISingleObjectiveSolutionScope offspring = null; while (evaluations < p1.Solution.Length) { LinearLinkage c = null; var xochoice = cacheHits.SampleRandom(Context.Random).Key; switch (xochoice) { case 0: c = GroupCrossover.Apply(Context.Random, p1.Solution, p2.Solution); break; case 1: c = SinglePointCrossover.Apply(Context.Random, p1.Solution, p2.Solution); break; } if (cache.Contains(c)) { cacheHits[xochoice]++; if (cacheHits[xochoice] > 10) { cacheHits.Remove(xochoice); if (cacheHits.Count == 0) break; } continue; } probe.Solution = c; Context.Evaluate(probe, token); evaluations++; cache.Add(c); if (offspring == null || Context.IsBetter(probe, offspring)) { offspring = probe; if (Context.IsBetter(offspring, p1) && Context.IsBetter(offspring, p2)) break; } } Context.IncrementEvaluatedSolutions(evaluations); return offspring ?? probe; } protected override ISingleObjectiveSolutionScope Link(ISingleObjectiveSolutionScope a, ISingleObjectiveSolutionScope b, CancellationToken token, bool delink = false) { var evaluations = 0; var probe = (ISingleObjectiveSolutionScope)a.Clone(); ISingleObjectiveSolutionScope best = null; while (true) { Move bestMove = null; var bestMoveQ = double.NaN; // this approach may not fully relink the two solutions foreach (var m in MoveGenerator.Generate(probe.Solution)) { var distBefore = Dist(probe, b); m.Apply(probe.Solution); var distAfter = Dist(probe, b); // consider all moves that would increase the distance between probe and b // or decrease it depending on whether we do delinking or relinking if (delink && distAfter > distBefore || !delink && distAfter < distBefore) { var beforeQ = probe.Fitness; Context.Evaluate(probe, token); evaluations++; var q = probe.Fitness; m.Undo(probe.Solution); probe.Fitness = beforeQ; if (Context.IsBetter(q, bestMoveQ)) { bestMove = m; bestMoveQ = q; } if (Context.IsBetter(q, beforeQ)) break; } else m.Undo(probe.Solution); } if (bestMove == null) break; bestMove.Apply(probe.Solution); probe.Fitness = bestMoveQ; if (best == null || Context.IsBetter(probe, best)) best = (ISingleObjectiveSolutionScope)probe.Clone(); } Context.IncrementEvaluatedSolutions(evaluations); return best ?? probe; } } }