#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*
* Author: Sabine Winkler
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.IntegerVectorEncoding;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Problems.GrammaticalEvolution.Mappers;
using HeuristicLab.Random;
namespace HeuristicLab.Problems.GrammaticalEvolution {
[StorableClass]
public abstract class GESymbolicDataAnalysisEvaluator : SingleSuccessorOperator,
IGESymbolicDataAnalysisEvaluator, ISymbolicDataAnalysisInterpreterOperator, ISymbolicDataAnalysisBoundedOperator, IStochasticOperator
where T : class, IDataAnalysisProblemData {
private const string RandomParameterName = "Random";
private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
private const string ProblemDataParameterName = "ProblemData";
private const string IntegerVectorParameterName = "IntegerVector";
private const string GenotypeToPhenotypeMapperParameterName = "GenotypeToPhenotypeMapper";
private const string SymbolicExpressionTreeGrammarParameterName = "SymbolicExpressionTreeGrammar";
private const string EstimationLimitsParameterName = "EstimationLimits";
private const string EvaluationPartitionParameterName = "EvaluationPartition";
private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
private const string ValidRowIndicatorParameterName = "ValidRowIndicator";
public override bool CanChangeName { get { return false; } }
#region parameter properties
ILookupParameter IStochasticOperator.RandomParameter {
get { return RandomParameter; }
}
public IValueLookupParameter RandomParameter {
get { return (IValueLookupParameter)Parameters[RandomParameterName]; }
}
public ILookupParameter SymbolicExpressionTreeParameter {
get { return (ILookupParameter)Parameters[SymbolicExpressionTreeParameterName]; }
}
public ILookupParameter SymbolicDataAnalysisTreeInterpreterParameter {
get { return (ILookupParameter)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
}
public IValueLookupParameter ProblemDataParameter {
get { return (IValueLookupParameter)Parameters[ProblemDataParameterName]; }
}
public ILookupParameter IntegerVectorParameter {
get { return (ILookupParameter)Parameters[IntegerVectorParameterName]; }
}
public ILookupParameter GenotypeToPhenotypeMapperParameter {
get { return (ILookupParameter)Parameters[GenotypeToPhenotypeMapperParameterName]; }
}
public IValueLookupParameter SymbolicExpressionTreeGrammarParameter {
get { return (IValueLookupParameter)Parameters[SymbolicExpressionTreeGrammarParameterName]; }
}
public IValueLookupParameter EvaluationPartitionParameter {
get { return (IValueLookupParameter)Parameters[EvaluationPartitionParameterName]; }
}
public IValueLookupParameter EstimationLimitsParameter {
get { return (IValueLookupParameter)Parameters[EstimationLimitsParameterName]; }
}
public IValueLookupParameter RelativeNumberOfEvaluatedSamplesParameter {
get { return (IValueLookupParameter)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
}
public ILookupParameter ApplyLinearScalingParameter {
get { return (ILookupParameter)Parameters[ApplyLinearScalingParameterName]; }
}
public IValueLookupParameter ValidRowIndicatorParameter {
get { return (IValueLookupParameter)Parameters[ValidRowIndicatorParameterName]; }
}
#endregion
[StorableConstructor]
protected GESymbolicDataAnalysisEvaluator(bool deserializing) : base(deserializing) { }
protected GESymbolicDataAnalysisEvaluator(GESymbolicDataAnalysisEvaluator original, Cloner cloner)
: base(original, cloner) {
}
public GESymbolicDataAnalysisEvaluator()
: base() {
Parameters.Add(new ValueLookupParameter(RandomParameterName, "The random generator to use."));
Parameters.Add(new LookupParameter(SymbolicDataAnalysisTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic data analysis tree."));
Parameters.Add(new LookupParameter(SymbolicExpressionTreeParameterName, "The symbolic data analysis solution encoded as a symbolic expression tree."));
Parameters.Add(new ValueLookupParameter(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated."));
Parameters.Add(new LookupParameter(IntegerVectorParameterName, "The symbolic data analysis solution encoded as an integer vector genome."));
Parameters.Add(new LookupParameter(GenotypeToPhenotypeMapperParameterName, "Maps the genotype (an integer vector) to the phenotype (a symbolic expression tree)."));
Parameters.Add(new ValueLookupParameter(SymbolicExpressionTreeGrammarParameterName, "The tree grammar that defines the correct syntax of symbolic expression trees that should be created."));
Parameters.Add(new ValueLookupParameter(EvaluationPartitionParameterName, "The start index of the dataset partition on which the symbolic data analysis solution should be evaluated."));
Parameters.Add(new ValueLookupParameter(EstimationLimitsParameterName, "The upper and lower limit that should be used as cut off value for the output values of symbolic data analysis trees."));
Parameters.Add(new ValueLookupParameter(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index."));
Parameters.Add(new LookupParameter(ApplyLinearScalingParameterName, "Flag that indicates if the individual should be linearly scaled before evaluating."));
Parameters.Add(new ValueLookupParameter(ValidRowIndicatorParameterName, "An indicator variable in the data set that specifies which rows should be evaluated (those for which the indicator <> 0) (optional)."));
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
}
}
}