#region License Information /* HeuristicLab * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Optimization.Operators; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Encodings.IntegerVectorEncoding { [Item("Euclidean Similarity Calculator for IntegerVector", "Calculates the solution similarity based on the Euclidean distance and a transformation into (0;1] between two integer vectors.")] [StorableClass] public sealed class EuclideanSimilarityCalculator : SingleObjectiveSolutionSimilarityCalculator { protected override bool IsCommutative { get { return true; } } [Storable] private double scaling; /// /// The higher the scaling, the higher the similarity score for solutions of larger Euclidean distance. /// A value of 1 means no scaling is applied. The function for squashing the numbers into (0;1] is /// 1 / (1 + x / scaling) where x is the Euclidean distance. /// public double Scaling { get { return scaling; } set { scaling = value; } } [StorableConstructor] private EuclideanSimilarityCalculator(bool deserializing) : base(deserializing) { } private EuclideanSimilarityCalculator(EuclideanSimilarityCalculator original, Cloner cloner) : base(original, cloner) { scaling = original.scaling; } public EuclideanSimilarityCalculator() { scaling = 1; } public override IDeepCloneable Clone(Cloner cloner) { return new EuclideanSimilarityCalculator(this, cloner); } public static double CalculateSimilarity(IntegerVector left, IntegerVector right, double scaling = 1.0) { if (left == null || right == null) throw new ArgumentException("Cannot calculate similarity because one or both of the provided solutions is null."); if (left.Length != right.Length) throw new ArgumentException("Cannot calculate similarity because the provided solutions have different lengths."); if (left.Length == 0) throw new ArgumentException("Cannot calculate similarity because solutions are of length 0."); if (scaling <= 0) throw new ArgumentException("Cannot choose a 0 or negative scaling value."); if (ReferenceEquals(left, right)) return 1.0; var distance = 0.0; for (int i = 0; i < left.Length; i++) distance += (left[i] - right[i]) * (left[i] - right[i]); return 1.0 / (1.0 + Math.Sqrt(distance) / scaling); } public override double CalculateSolutionSimilarity(IScope leftSolution, IScope rightSolution) { var left = leftSolution.Variables[SolutionVariableName].Value as IntegerVector; var right = rightSolution.Variables[SolutionVariableName].Value as IntegerVector; return CalculateSimilarity(left, right, Scaling); } } }