#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Common.Resources; using HeuristicLab.Core; using HeuristicLab.Data; namespace HeuristicLab.DataPreprocessing { [Item("PreprocessingChart", "Represents a preprocessing chart.")] public class PreprocessingChartContent : Item, IViewShortcut { public enum LegendOrder { Alphabetically, Appearance } public static new Image StaticItemImage { get { return VSImageLibrary.PieChart; } } private ICheckedItemList variableItemList = null; public ICheckedItemList VariableItemList { get { if (variableItemList == null) variableItemList = CreateVariableItemList(PreprocessingData); return this.variableItemList; } } public IFilteredPreprocessingData PreprocessingData { get; private set; } public event DataPreprocessingChangedEventHandler Changed { add { PreprocessingData.Changed += value; } remove { PreprocessingData.Changed -= value; } } public PreprocessingChartContent(IFilteredPreprocessingData preprocessingData) { PreprocessingData = preprocessingData; } public PreprocessingChartContent(PreprocessingChartContent content, Cloner cloner) : base(content, cloner) { this.PreprocessingData = content.PreprocessingData; this.variableItemList = cloner.Clone>(variableItemList); } public override IDeepCloneable Clone(Cloner cloner) { return new PreprocessingChartContent(this, cloner); } public DataRow CreateDataRow(string variableName, DataRowVisualProperties.DataRowChartType chartType) { return CreateDataRow(PreprocessingData, variableName, chartType); } public static DataRow CreateDataRow(IFilteredPreprocessingData preprocessingData, string variableName, DataRowVisualProperties.DataRowChartType chartType) { IList values = preprocessingData.GetValues(preprocessingData.GetColumnIndex(variableName)); DataRow row = new DataRow(variableName, "", values); row.VisualProperties.ChartType = chartType; return row; } private static ICheckedItemList CreateVariableItemList(IPreprocessingData preprocessingData) { ICheckedItemList itemList = new CheckedItemList(); foreach (string name in preprocessingData.GetDoubleVariableNames()) { var n = new StringValue(name); bool isInputTarget = preprocessingData.InputVariables.Contains(name) || preprocessingData.TargetVariable == name; itemList.Add(n, isInputTarget); } return new ReadOnlyCheckedItemList(itemList); } public static IEnumerable GetVariableNamesForGrouping(IPreprocessingData preprocessingData, int maxDistinctValues = 20) { var variableNames = new List(); for (int i = 0; i < preprocessingData.Columns; ++i) { int distinctValues = Int32.MaxValue; if (preprocessingData.VariableHasType(i)) distinctValues = preprocessingData.GetValues(i).GroupBy(x => x).Count(); else if (preprocessingData.VariableHasType(i)) distinctValues = preprocessingData.GetValues(i).GroupBy(x => x).Count(); else if (preprocessingData.VariableHasType(i)) distinctValues = preprocessingData.GetValues(i).GroupBy(x => x).Count(); if (distinctValues <= maxDistinctValues) variableNames.Add(preprocessingData.GetVariableName(i)); } return variableNames; } } }