#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Common.Resources;
using HeuristicLab.Core;
using HeuristicLab.Data;
namespace HeuristicLab.DataPreprocessing {
[Item("PreprocessingChart", "Represents a preprocessing chart.")]
public class PreprocessingChartContent : Item, IViewShortcut {
public enum LegendOrder {
Alphabetically,
Appearance
}
public static new Image StaticItemImage {
get { return VSImageLibrary.PieChart; }
}
private ICheckedItemList variableItemList = null;
public ICheckedItemList VariableItemList {
get {
if (variableItemList == null)
variableItemList = CreateVariableItemList(PreprocessingData);
return this.variableItemList;
}
}
public IFilteredPreprocessingData PreprocessingData { get; private set; }
public event DataPreprocessingChangedEventHandler Changed {
add { PreprocessingData.Changed += value; }
remove { PreprocessingData.Changed -= value; }
}
public PreprocessingChartContent(IFilteredPreprocessingData preprocessingData) {
PreprocessingData = preprocessingData;
}
public PreprocessingChartContent(PreprocessingChartContent content, Cloner cloner)
: base(content, cloner) {
this.PreprocessingData = content.PreprocessingData;
this.variableItemList = cloner.Clone>(variableItemList);
}
public override IDeepCloneable Clone(Cloner cloner) {
return new PreprocessingChartContent(this, cloner);
}
public DataRow CreateDataRow(string variableName, DataRowVisualProperties.DataRowChartType chartType) {
return CreateDataRow(PreprocessingData, variableName, chartType);
}
public static DataRow CreateDataRow(IFilteredPreprocessingData preprocessingData, string variableName, DataRowVisualProperties.DataRowChartType chartType) {
IList values = preprocessingData.GetValues(preprocessingData.GetColumnIndex(variableName));
DataRow row = new DataRow(variableName, "", values);
row.VisualProperties.ChartType = chartType;
return row;
}
private static ICheckedItemList CreateVariableItemList(IPreprocessingData preprocessingData) {
ICheckedItemList itemList = new CheckedItemList();
foreach (string name in preprocessingData.GetDoubleVariableNames()) {
var n = new StringValue(name);
bool isInputTarget = preprocessingData.InputVariables.Contains(name) || preprocessingData.TargetVariable == name;
itemList.Add(n, isInputTarget);
}
return new ReadOnlyCheckedItemList(itemList);
}
public static IEnumerable GetVariableNamesForGrouping(IPreprocessingData preprocessingData, int maxDistinctValues = 20) {
var variableNames = new List();
for (int i = 0; i < preprocessingData.Columns; ++i) {
int distinctValues = Int32.MaxValue;
if (preprocessingData.VariableHasType(i))
distinctValues = preprocessingData.GetValues(i).GroupBy(x => x).Count();
else if (preprocessingData.VariableHasType(i))
distinctValues = preprocessingData.GetValues(i).GroupBy(x => x).Count();
else if (preprocessingData.VariableHasType(i))
distinctValues = preprocessingData.GetValues(i).GroupBy(x => x).Count();
if (distinctValues <= maxDistinctValues)
variableNames.Add(preprocessingData.GetVariableName(i));
}
return variableNames;
}
}
}