#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HEAL.Attic;
using HeuristicLab.Collections;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.RealVectorEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Problems.DataAnalysis;
using System;
using System.Collections.Generic;
using System.Linq;
namespace HeuristicLab.GoalSeeking {
[Item("Goal seeking problem (multi-objective)", "Represents a single objective optimization problem which uses configurable regression models to evaluate targets from a given dataset.")]
[Creatable("Problems")]
[StorableType("76EA4627-FD52-41D0-A594-20C99F700F46")]
public sealed class MultiObjectiveGoalSeekingProblem : MultiObjectiveBasicProblem, IGoalSeekingProblem {
#region parameter names
private const string InputsParameterName = "Inputs";
private const string GoalsParameterName = "Goals";
private const string ModelsParameterName = "Models";
private const string QualitySumCutoffParameterName = "QualitySumCutoff";
#endregion
#region parameters
public IValueParameter> InputsParameter {
get { return (IValueParameter>)Parameters[InputsParameterName]; }
}
public IValueParameter> GoalsParameter {
get { return (IValueParameter>)Parameters[GoalsParameterName]; }
}
public IFixedValueParameter> ModelsParameter {
get { return (IFixedValueParameter>)Parameters[ModelsParameterName]; }
}
public IFixedValueParameter QualitySumCutoffParameter {
get { return (IFixedValueParameter)Parameters[QualitySumCutoffParameterName]; }
}
#endregion
#region IGoalSeekingProblem implementation
public IEnumerable Models {
get { return ModelsParameter.Value; }
}
public IEnumerable Goals {
get { return GoalsParameter.Value; }
}
public IEnumerable Inputs {
get { return InputsParameter.Value; }
}
public void AddModel(IRegressionModel model) {
var models = ModelsParameter.Value;
models.Add(model);
GoalSeekingUtil.RaiseEvent(this, ModelsChanged);
}
public void RemoveModel(IRegressionModel model) {
var models = ModelsParameter.Value;
models.Remove(model);
GoalSeekingUtil.RaiseEvent(this, ModelsChanged);
}
public void Configure(IRegressionProblemData problemData, int row) {
GoalSeekingUtil.Configure(Goals, Inputs, problemData, row);
}
public IEnumerable GetEstimatedGoalValues(IEnumerable parameterValues, bool round = false) {
var ds = (ModifiableDataset)dataset.Clone();
foreach (var parameter in ActiveInputs.Zip(parameterValues, (p, v) => new { p.Name, Value = v })) {
ds.SetVariableValue(parameter.Value, parameter.Name, 0);
}
var rows = new[] { 0 }; // actually just one row
return round ? ActiveGoals.Select(t => RoundToNearestStepMultiple(GetModels(t.Name).Average(m => m.GetEstimatedValues(ds, rows).Single()), t.Step))
: ActiveGoals.Select(t => GetModels(t.Name).Average(m => m.GetEstimatedValues(ds, rows).Single()));
}
public event EventHandler ModelsChanged;
public event EventHandler TargetsChanged;
public event EventHandler ParametersChanged;
#endregion
private IEnumerable ActiveGoals {
get { return Goals.Where(x => x.Active); }
}
private IEnumerable ActiveInputs {
get { return Inputs.Where(x => x.Active); }
}
private double QualitySumCutoff {
get { return QualitySumCutoffParameter.Value.Value; }
}
[Storable]
private ModifiableDataset dataset; // modifiable dataset
[Storable]
private bool[] maximization;
public override bool[] Maximization {
get { return maximization ?? new bool[] { false }; }
}
public ValueParameter MaximizationParameter {
get { return (ValueParameter)Parameters["Maximization"]; }
}
#region constructors
[StorableConstructor]
private MultiObjectiveGoalSeekingProblem(StorableConstructorFlag _) : base(_) { }
private MultiObjectiveGoalSeekingProblem(MultiObjectiveGoalSeekingProblem original, Cloner cloner) : base(original, cloner) {
this.dataset = cloner.Clone(original.dataset);
RegisterEvents();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new MultiObjectiveGoalSeekingProblem(this, cloner);
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
RegisterEvents();
}
public MultiObjectiveGoalSeekingProblem() {
dataset = new ModifiableDataset();
Parameters.Add(new ValueParameter>(InputsParameterName));
Parameters.Add(new ValueParameter>(GoalsParameterName));
Parameters.Add(new FixedValueParameter>(ModelsParameterName, new ItemList()));
Parameters.Add(new FixedValueParameter(QualitySumCutoffParameterName, new DoubleValue(0.2)));
QualitySumCutoffParameter.Hidden = true;
EncodingParameter.Hidden = true;
EvaluatorParameter.Hidden = true;
SolutionCreatorParameter.Hidden = true;
MaximizationParameter.Hidden = true;
RegisterEvents();
}
#endregion
public override double[] Evaluate(Individual individual, IRandom random) {
var vector = individual.RealVector();
vector.ElementNames = ActiveInputs.Select(x => x.Name);
int i = 0;
// round vector according to parameter step sizes
foreach (var parameter in ActiveInputs) {
vector[i] = RoundToNearestStepMultiple(vector[i], parameter.Step);
++i;
}
var estimatedValues = GetEstimatedGoalValues(vector, round: true);
var qualities = ActiveGoals.Zip(estimatedValues, (t, v) => new { Target = t, EstimatedValue = v })
.Select(x => x.Target.Weight * Math.Pow(x.EstimatedValue - x.Target.Goal, 2) / x.Target.Variance);
return qualities.ToArray();
}
#region pareto analyzer
public override void Analyze(Individual[] individuals, double[][] qualities, ResultCollection results, IRandom random) {
var matrix = FilterFrontsByQualitySum(individuals, qualities, Math.Max(QualitySumCutoff, qualities.Min(x => x.Sum())));
const string resultName = "Pareto Front Solutions"; // disclaimer: not really a pareto front
if (!results.ContainsKey(resultName)) {
results.Add(new Result(resultName, matrix));
} else {
results[resultName].Value = matrix;
}
base.Analyze(individuals, qualities, results, random);
}
private DoubleMatrix FilterFrontsByQualitySum(Individual[] individuals, double[][] qualities, double qualitySumCutoff) {
var activeParameters = ActiveInputs.ToList();
var activeGoals = ActiveGoals.ToList();
var filteredModels = new List();
var rowNames = new List();
// build list of column names by combining target and parameter names (with their respective original and estimated values)
var columnNames = new List { "Quality Sum" };
foreach (var target in activeGoals) {
columnNames.Add(target.Name);
columnNames.Add(target.Name + " (estimated)");
}
foreach (var parameter in activeParameters) {
columnNames.Add(parameter.Name);
columnNames.Add(parameter.Name + " (estimated)");
columnNames.Add(parameter.Name + " (deviation)");
}
// filter models based on their quality sum; remove duplicate models
var dec = new DoubleEqualityComparer(); // comparer which uses the IsAlmost method for comparing floating point numbers
for (int i = 0; i < individuals.Length; ++i) {
var qualitySum = qualities[i].Sum();
if (qualitySum > qualitySumCutoff)
continue;
var vector = individuals[i].RealVector();
var estimatedValues = GetEstimatedGoalValues(vector).ToList();
var rowValues = new double[columnNames.Count];
rowValues[0] = qualitySum;
int offset = 1;
for (int j = 0; j < activeGoals.Count * 2; j += 2) {
int k = j + offset;
rowValues[k] = activeGoals[j / 2].Goal; // original value
rowValues[k + 1] = estimatedValues[j / 2]; // estimated value
}
offset += activeGoals.Count * 2;
for (int j = 0; j < activeParameters.Count * 3; j += 3) {
int k = j + offset;
rowValues[k] = activeParameters[j / 3].Value;
rowValues[k + 1] = vector[j / 3];
rowValues[k + 2] = rowValues[k + 1] - rowValues[k];
}
if (!filteredModels.Any(x => x.SequenceEqual(rowValues, dec))) {
rowNames.Add((i + 1).ToString());
filteredModels.Add(rowValues);
}
}
var matrix = new DoubleMatrix(filteredModels.Count, columnNames.Count) { RowNames = rowNames, ColumnNames = columnNames, SortableView = true };
for (int i = 0; i < filteredModels.Count; ++i) {
for (int j = 0; j < filteredModels[i].Length; ++j) {
matrix[i, j] = filteredModels[i][j];
}
}
return matrix;
}
#endregion
#region event handlers
private void RegisterEvents() {
ModelsParameter.Value.ItemsAdded += ModelCollection_ItemsChanged;
ModelsParameter.Value.ItemsRemoved += ModelCollection_ItemsChanged;
GoalsParameter.Value.CheckedItemsChanged += GoalSeekingUtil.Goals_CheckedItemsChanged;
InputsParameter.Value.CheckedItemsChanged += GoalSeekingUtil.Inputs_CheckedItemsChanged;
foreach (var input in Inputs)
input.Changed += InputParameterChanged;
foreach (var goal in Goals)
goal.Changed += GoalParameterChanged;
}
private void ModelCollection_ItemsChanged(object sender, CollectionItemsChangedEventArgs> e) {
if (e.Items == null || !e.Items.Any()) return;
GoalSeekingUtil.UpdateInputs(InputsParameter.Value, Models, InputParameterChanged);
GoalSeekingUtil.UpdateEncoding(Encoding, ActiveInputs);
dataset = Inputs.Any() ? new ModifiableDataset(Inputs.Select(x => x.Name), Inputs.Select(x => new List { x.Value })) : new ModifiableDataset();
GoalSeekingUtil.UpdateTargets(GoalsParameter.Value, Models, GoalParameterChanged);
GoalSeekingUtil.RaiseEvent(this, ModelsChanged);
}
private void InputParameterChanged(object sender, EventArgs args) {
var inputParameter = (InputParameter)sender;
var inputs = InputsParameter.Value;
if (inputs.ItemChecked(inputParameter) != inputParameter.Active)
inputs.SetItemCheckedState(inputParameter, inputParameter.Active);
GoalSeekingUtil.UpdateEncoding(Encoding, ActiveInputs);
}
private void GoalParameterChanged(object sender, EventArgs args) {
var goalParameter = (GoalParameter)sender;
var goals = GoalsParameter.Value;
if (goals.ItemChecked(goalParameter) != goalParameter.Active)
goals.SetItemCheckedState(goalParameter, goalParameter.Active);
}
#endregion
#region helper methods
// method which throws an exception that can be caught in the event handler if the check fails
private void CheckIfDatasetContainsTarget(string target) {
if (dataset.DoubleVariables.All(x => x != target))
throw new ArgumentException(string.Format("Model target \"{0}\" does not exist in the dataset.", target));
}
private static double RoundToNearestStepMultiple(double value, double step) {
return step * (long)Math.Round(value / step);
}
private IEnumerable GetModels(string target) {
return Models.Where(x => x.TargetVariable == target);
}
private class DoubleEqualityComparer : IEqualityComparer {
public bool Equals(double x, double y) { return x.IsAlmost(y); }
public int GetHashCode(double obj) { return obj.GetHashCode(); }
}
#endregion
}
}