#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
namespace HeuristicLab.Problems.TestFunctions.MultiObjective {
///
/// Crowding distance d(x,A) is usually defined between a point x and a set of points A
/// d(x,A) is then a weighted sum over all dimensions where for each dimension the next larger and the next smaller Point to x are subtracted
/// I extended the concept and defined the Crowding distance of a front A as the mean of the crowding distances of every point x in A
/// C(A) = mean(d(x,A)) where x in A and d(x,A) is not infinite
/// Beware that Crowding is not normalized for the number of dimensions. A higher number of dimensions normlly indicated higher expected Crowding values
///
public static class Crowding {
public static double Calculate(IEnumerable front, double[,] bounds) {
return GetForFront(front, bounds).Where(d => !double.IsPositiveInfinity(d)).DefaultIfEmpty(double.PositiveInfinity).Average();
}
public static IEnumerable GetForFront(IEnumerable front, double[,] bounds) {
if (front == null) throw new ArgumentException("Fronts must not be null");
if (!front.Any()) throw new ArgumentException("Fronts must not be empty");
if (bounds == null) throw new ArgumentException("Bounds must not be null");
double[] pointsums = new double[front.Count()];
for (int dim = 0; dim < front.First().Length; dim++) {
double[] arr = front.Select(x => x[dim]).ToArray();
Array.Sort(arr);
double fmax = bounds[dim % bounds.GetLength(0), 1];
double fmin = bounds[dim % bounds.GetLength(0), 0];
int pointIdx = 0;
foreach (double[] point in front) {
double d = 0;
int pos = Array.BinarySearch(arr, point[dim]);
if (pos != 0 && pos != arr.Count() - 1) {
d = (arr[pos + 1] - arr[pos - 1]) / (fmax - fmin);
pointsums[pointIdx++] += d;
} else {
pointsums[pointIdx++] = Double.PositiveInfinity;
}
}
}
return pointsums;
}
public static double GetForSinglePoints(IEnumerable front, double[,] bounds, int pointIndex) {
if (front == null) throw new ArgumentException("Fronts must not be null");
if (!front.Any()) throw new ArgumentException("Fronts must not be empty");
if (bounds == null) throw new ArgumentException("Bounds must not be null");
if (pointIndex < 0 || front.Count() <= pointIndex) throw new ArgumentException("PointIndex is not valid ");
double pointsum = 0;
double[] point = front.ElementAt(pointIndex);
for (int dim = 0; dim < front.First().Length; dim++) {
double[] arr = front.Select(x => x[dim]).ToArray();
Array.Sort(arr);
double fmax = bounds[dim % bounds.GetLength(0), 1];
double fmin = bounds[dim % bounds.GetLength(0), 0];
int pointIdx = pointIndex;
int pos = Array.BinarySearch(arr, point[dim]);
if (pos != 0 && pos != arr.Count() - 1) {
double d = (arr[pos + 1] - arr[pos - 1]) / (fmax - fmin);
pointsum += d;
}
}
return pointsum;
}
}
}