#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
[Item("SymbolicRegressionSingleObjectiveOSGAEvaluator", "An evaluator which tries to predict when a child will not be able to fullfil offspring selection criteria, to save evaluation time.")]
[StorableClass]
public class SymbolicRegressionSingleObjectiveOsgaEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
private const string RelativeParentChildQualityThresholdParameterName = "RelativeParentChildQualityThreshold";
private const string RelativeFitnessEvaluationIntervalSizeParameterName = "RelativeFitnessEvaluationIntervalSize";
private const string ResultCollectionParameterName = "Results";
private const string AggregateStatisticsParameterName = "AggregateStatistics";
private const string ActualSelectionPressureParameterName = "SelectionPressure";
private const string UseAdaptiveQualityThresholdParameterName = "UseAdaptiveQualityThreshold";
private const string UseFixedEvaluationIntervalsParameterName = "UseFixedEvaluationIntervals";
private const string PreserveResultCompatibilityParameterName = "PreserveEvaluationResultCompatibility";
#region parameters
public IFixedValueParameter PreserveResultCompatibilityParameter {
get { return (IFixedValueParameter)Parameters[PreserveResultCompatibilityParameterName]; }
}
public IFixedValueParameter UseFixedEvaluationIntervalsParameter {
get { return (IFixedValueParameter)Parameters[UseFixedEvaluationIntervalsParameterName]; }
}
public IFixedValueParameter UseAdaptiveQualityThresholdParameter {
get { return (IFixedValueParameter)Parameters[UseAdaptiveQualityThresholdParameterName]; }
}
public ILookupParameter ActualSelectionPressureParameter {
get { return (ILookupParameter)Parameters[ActualSelectionPressureParameterName]; }
}
public ILookupParameter ResultCollectionParameter {
get { return (ILookupParameter)Parameters[ResultCollectionParameterName]; }
}
public IValueParameter AggregateStatisticsParameter {
get { return (IValueParameter)Parameters[AggregateStatisticsParameterName]; }
}
public IValueLookupParameter ComparisonFactorParameter {
get { return (ValueLookupParameter)Parameters["ComparisonFactor"]; }
}
public IFixedValueParameter RelativeParentChildQualityThresholdParameter {
get { return (IFixedValueParameter)Parameters[RelativeParentChildQualityThresholdParameterName]; }
}
public IFixedValueParameter RelativeFitnessEvaluationIntervalSizeParameter {
get { return (IFixedValueParameter)Parameters[RelativeFitnessEvaluationIntervalSizeParameterName]; }
}
public IScopeTreeLookupParameter ParentQualitiesParameter { get { return (IScopeTreeLookupParameter)Parameters["ParentQualities"]; } }
#endregion
#region parameter properties
public bool AggregateStatistics {
get { return AggregateStatisticsParameter.Value.Value; }
set { AggregateStatisticsParameter.Value.Value = value; }
}
public bool PreserveResultCompatibility {
get { return PreserveResultCompatibilityParameter.Value.Value; }
set { PreserveResultCompatibilityParameter.Value.Value = value; }
}
public bool UseFixedEvaluationIntervals {
get { return UseFixedEvaluationIntervalsParameter.Value.Value; }
set { UseFixedEvaluationIntervalsParameter.Value.Value = value; }
}
public bool UseAdaptiveQualityThreshold {
get { return UseAdaptiveQualityThresholdParameter.Value.Value; }
set { UseAdaptiveQualityThresholdParameter.Value.Value = value; }
}
public double RelativeParentChildQualityThreshold {
get { return RelativeParentChildQualityThresholdParameter.Value.Value; }
set { RelativeParentChildQualityThresholdParameter.Value.Value = value; }
}
public double RelativeFitnessEvaluationIntervalSize {
get { return RelativeFitnessEvaluationIntervalSizeParameter.Value.Value; }
set { RelativeFitnessEvaluationIntervalSizeParameter.Value.Value = value; }
}
#endregion
public override bool Maximization {
get { return true; }
}
// keep track of statistics
public double AdjustedEvaluatedSolutions { get; set; }
public IntMatrix RejectedStats { get; set; }
public IntMatrix TotalStats { get; set; }
public SymbolicRegressionSingleObjectiveOsgaEvaluator() {
Parameters.Add(new ValueLookupParameter("ComparisonFactor", "Determines if the quality should be compared to the better parent (1.0), to the worse (0.0) or to any linearly interpolated value between them."));
Parameters.Add(new FixedValueParameter(RelativeParentChildQualityThresholdParameterName, new PercentValue(0.9)));
Parameters.Add(new FixedValueParameter(RelativeFitnessEvaluationIntervalSizeParameterName, new PercentValue(0.1)));
Parameters.Add(new LookupParameter(ResultCollectionParameterName));
Parameters.Add(new ScopeTreeLookupParameter("ParentQualities") { ActualName = "Quality" });
Parameters.Add(new ValueParameter(AggregateStatisticsParameterName, new BoolValue(false)));
Parameters.Add(new LookupParameter(ActualSelectionPressureParameterName));
Parameters.Add(new FixedValueParameter(UseAdaptiveQualityThresholdParameterName, new BoolValue(false)));
Parameters.Add(new FixedValueParameter(UseFixedEvaluationIntervalsParameterName, new BoolValue(false)));
Parameters.Add(new FixedValueParameter(PreserveResultCompatibilityParameterName, new BoolValue(false)));
RejectedStats = new IntMatrix();
TotalStats = new IntMatrix();
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
if (!Parameters.ContainsKey(ActualSelectionPressureParameterName))
Parameters.Add(new LookupParameter(ActualSelectionPressureParameterName));
if (!Parameters.ContainsKey(UseAdaptiveQualityThresholdParameterName))
Parameters.Add(new FixedValueParameter(UseAdaptiveQualityThresholdParameterName, new BoolValue(false)));
if (!Parameters.ContainsKey(UseFixedEvaluationIntervalsParameterName))
Parameters.Add(new FixedValueParameter(UseFixedEvaluationIntervalsParameterName, new BoolValue(false)));
if (!Parameters.ContainsKey(PreserveResultCompatibilityParameterName))
Parameters.Add(new FixedValueParameter(PreserveResultCompatibilityParameterName, new BoolValue(false)));
}
[StorableConstructor]
protected SymbolicRegressionSingleObjectiveOsgaEvaluator(bool deserializing) : base(deserializing) {
TotalStats = new IntMatrix();
RejectedStats = new IntMatrix();
}
protected SymbolicRegressionSingleObjectiveOsgaEvaluator(SymbolicRegressionSingleObjectiveOsgaEvaluator original,
Cloner cloner) : base(original, cloner) {
if (original.TotalStats != null)
TotalStats = cloner.Clone(original.TotalStats);
if (original.RejectedStats != null)
RejectedStats = cloner.Clone(original.RejectedStats);
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicRegressionSingleObjectiveOsgaEvaluator(this, cloner);
}
public override void ClearState() {
base.ClearState();
RejectedStats = new IntMatrix();
TotalStats = new IntMatrix();
AdjustedEvaluatedSolutions = 0;
}
public override IOperation InstrumentedApply() {
var solution = SymbolicExpressionTreeParameter.ActualValue;
IEnumerable rows = GenerateRowsToEvaluate();
var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
var estimationLimits = EstimationLimitsParameter.ActualValue;
var problemData = ProblemDataParameter.ActualValue;
var applyLinearScaling = ApplyLinearScalingParameter.ActualValue.Value;
double quality;
var parentQualities = ParentQualitiesParameter.ActualValue;
// parent subscopes are not present during evaluation of the initial population
if (parentQualities.Length > 0) {
quality = Calculate(interpreter, solution, estimationLimits, problemData, rows);
} else {
quality = Calculate(interpreter, solution, estimationLimits.Lower, estimationLimits.Upper, problemData, rows, applyLinearScaling);
}
QualityParameter.ActualValue = new DoubleValue(quality);
return base.InstrumentedApply();
}
public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable rows, bool applyLinearScaling) {
IEnumerable estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
IEnumerable targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
OnlineCalculatorError errorState;
double r;
if (applyLinearScaling) {
var rCalculator = new OnlinePearsonsRCalculator();
CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, rCalculator, problemData.Dataset.Rows);
errorState = rCalculator.ErrorState;
r = rCalculator.R;
} else {
IEnumerable boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
r = OnlinePearsonsRCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState);
}
if (errorState != OnlineCalculatorError.None) return double.NaN;
return r * r;
}
private double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, DoubleLimit estimationLimits, IRegressionProblemData problemData, IEnumerable rows) {
var lowerEstimationLimit = EstimationLimitsParameter.ActualValue.Lower;
var upperEstimationLimit = EstimationLimitsParameter.ActualValue.Upper;
var estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows).LimitToRange(lowerEstimationLimit, upperEstimationLimit);
var targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows).ToList();
var parentQualities = ParentQualitiesParameter.ActualValue.Select(x => x.Value);
var minQuality = double.MaxValue;
var maxQuality = double.MinValue;
foreach (var quality in parentQualities) {
if (minQuality > quality) minQuality = quality;
if (maxQuality < quality) maxQuality = quality;
}
var comparisonFactor = ComparisonFactorParameter.ActualValue.Value;
var parentQuality = minQuality + (maxQuality - minQuality) * comparisonFactor;
#region fixed intervals
if (UseFixedEvaluationIntervals) {
double threshold = parentQuality * RelativeParentChildQualityThreshold;
if (UseAdaptiveQualityThreshold) {
var actualSelectionPressure = ActualSelectionPressureParameter.ActualValue;
if (actualSelectionPressure != null)
threshold = parentQuality * (1 - actualSelectionPressure.Value / 100.0);
}
var estimatedEnumerator = estimatedValues.GetEnumerator();
var targetEnumerator = targetValues.GetEnumerator();
var rcalc = new OnlinePearsonsRCalculator();
var trainingPartitionSize = problemData.TrainingPartition.Size;
var interval = (int)Math.Floor(trainingPartitionSize * RelativeFitnessEvaluationIntervalSize);
var calculatedRows = 0;
#region aggregate statistics
if (AggregateStatistics) {
var trainingEnd = problemData.TrainingPartition.End;
double quality = 0;
int intervalCount = 0, rejectionInterval = 0;
var predictedRejected = false;
while (estimatedEnumerator.MoveNext() & targetEnumerator.MoveNext()) {
var estimated = estimatedEnumerator.Current;
var target = targetEnumerator.Current;
rcalc.Add(target, estimated);
++calculatedRows;
if (calculatedRows % interval == 0 || calculatedRows == trainingPartitionSize) {
intervalCount++;
if (predictedRejected) continue;
var r = rcalc.ErrorState == OnlineCalculatorError.None ? rcalc.R : 0d;
quality = r * r;
if (!(quality > threshold)) {
rejectionInterval = intervalCount - 1;
predictedRejected = true;
}
}
}
var actualQuality = rcalc.ErrorState == OnlineCalculatorError.None ? rcalc.R : 0d;
actualQuality *= actualQuality;
if (!predictedRejected) quality = actualQuality;
var actuallyRejected = !(actualQuality > parentQuality);
if (RejectedStats.Rows == 0 || TotalStats.Rows == 0) {
RejectedStats = new IntMatrix(2, intervalCount + 1);
RejectedStats.RowNames = new[] { "Predicted", "Actual" };
RejectedStats.ColumnNames = Enumerable.Range(1, RejectedStats.Columns).Select(x => string.Format("0-{0}", Math.Min(trainingEnd, x * interval)));
TotalStats = new IntMatrix(2, 1);
TotalStats.RowNames = new[] { "Predicted", "Actual" };
TotalStats.ColumnNames = new[] { "Rejected" };
}
if (actuallyRejected) {
TotalStats[0, 0]++; // prediction true
TotalStats[1, 0]++;
RejectedStats[0, rejectionInterval]++;
RejectedStats[1, rejectionInterval]++;
} else {
if (predictedRejected) {
RejectedStats[0, rejectionInterval]++;
TotalStats[0, 0]++;
}
}
return quality;
}
#endregion
else {
while (estimatedEnumerator.MoveNext() & targetEnumerator.MoveNext()) {
rcalc.Add(targetEnumerator.Current, estimatedEnumerator.Current);
++calculatedRows;
if (calculatedRows % interval == 0 || calculatedRows == trainingPartitionSize) {
var q = rcalc.ErrorState != OnlineCalculatorError.None ? double.NaN : rcalc.R;
var quality = q * q;
if (!(quality > threshold)) {
AdjustedEvaluatedSolutions += (double)calculatedRows / problemData.TrainingPartition.Size;
return quality;
}
}
}
var r = rcalc.ErrorState != OnlineCalculatorError.None ? double.NaN : rcalc.R;
var actualQuality = r * r;
AdjustedEvaluatedSolutions += 1d;
return actualQuality;
}
#endregion
} else {
var lsc = new OnlineLinearScalingParameterCalculator();
var rcalc = new OnlinePearsonsRCalculator();
var interval = (int)Math.Round(RelativeFitnessEvaluationIntervalSize * problemData.TrainingPartition.Size);
var quality = 0d;
var calculatedRows = 0;
var cache = PreserveResultCompatibility ? new List(problemData.TrainingPartition.Size) : null;
foreach (var target in estimatedValues.Zip(targetValues, (e, t) => new { EstimatedValue = e, ActualValue = t })) {
if (cache != null)
cache.Add(target.EstimatedValue);
lsc.Add(target.EstimatedValue, target.ActualValue);
rcalc.Add(target.EstimatedValue, target.ActualValue);
calculatedRows++;
if (calculatedRows % interval != 0) continue;
var alpha = lsc.Alpha;
var beta = lsc.Beta;
if (lsc.ErrorState != OnlineCalculatorError.None) {
alpha = 0;
beta = 1;
}
var calc = (OnlinePearsonsRCalculator)rcalc.Clone();
foreach (var t in targetValues.Skip(calculatedRows)) {
var s = (t - alpha) / beta; // scaled target
calc.Add(s, t); // add pair (scaled, target) to the calculator
}
var r = calc.ErrorState == OnlineCalculatorError.None ? calc.R : 0d;
quality = r * r;
if (!(quality > parentQuality)) {
AdjustedEvaluatedSolutions += (double)calculatedRows / problemData.TrainingPartition.Size;
return quality;
}
}
if (PreserveResultCompatibility) {
// get quality for all the rows. to ensure reproducibility of results between this evaluator
// and the standard one, we calculate the quality in an identical way (otherwise the returned
// quality could be slightly off due to rounding errors (in the range 1e-15 to 1e-16)
var applyLinearScaling = ApplyLinearScalingParameter.ActualValue.Value;
double r;
OnlineCalculatorError calculatorError;
if (applyLinearScaling) {
var alpha = lsc.Alpha;
var beta = lsc.Beta;
if (lsc.ErrorState != OnlineCalculatorError.None) {
alpha = 0;
beta = 1;
}
var boundedEstimatedValues = cache.Select(x => x * beta + alpha).LimitToRange(estimationLimits.Lower, estimationLimits.Upper);
r = OnlinePearsonsRCalculator.Calculate(boundedEstimatedValues, targetValues, out calculatorError);
} else {
var boundedEstimatedValues = cache.LimitToRange(estimationLimits.Lower, estimationLimits.Upper);
r = OnlinePearsonsRCalculator.Calculate(boundedEstimatedValues, targetValues, out calculatorError);
}
quality = calculatorError == OnlineCalculatorError.None ? r * r : 0d;
}
AdjustedEvaluatedSolutions += 1d;
return quality;
}
}
public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable rows) {
SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
EstimationLimitsParameter.ExecutionContext = context;
ApplyLinearScalingParameter.ExecutionContext = context;
var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
var estimationLimits = EstimationLimitsParameter.ActualValue;
var applyLinearScaling = ApplyLinearScalingParameter.ActualValue.Value;
double r2 = Calculate(interpreter, tree, estimationLimits.Lower, estimationLimits.Upper, problemData, rows, applyLinearScaling);
SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
EstimationLimitsParameter.ExecutionContext = null;
ApplyLinearScalingParameter.ExecutionContext = null;
return r2;
}
}
}