[14072] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[16818] | 22 | using HEAL.Attic;
|
---|
[14072] | 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 27 | using HeuristicLab.Optimization;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
[16818] | 29 | using System;
|
---|
| 30 | using System.Collections.Generic;
|
---|
| 31 | using System.Linq;
|
---|
[14072] | 32 |
|
---|
| 33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
| 34 | [Item("SymbolicRegressionSingleObjectiveOSGAEvaluator", "An evaluator which tries to predict when a child will not be able to fullfil offspring selection criteria, to save evaluation time.")]
|
---|
[16818] | 35 | [StorableType("559C6852-9A4F-4C13-9AA5-3D2A44834AC3")]
|
---|
[14072] | 36 | public class SymbolicRegressionSingleObjectiveOsgaEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
|
---|
| 37 | private const string RelativeParentChildQualityThresholdParameterName = "RelativeParentChildQualityThreshold";
|
---|
| 38 | private const string RelativeFitnessEvaluationIntervalSizeParameterName = "RelativeFitnessEvaluationIntervalSize";
|
---|
| 39 | private const string ResultCollectionParameterName = "Results";
|
---|
[14231] | 40 | private const string AggregateStatisticsParameterName = "AggregateStatistics";
|
---|
[14279] | 41 | private const string ActualSelectionPressureParameterName = "SelectionPressure";
|
---|
| 42 | private const string UseAdaptiveQualityThresholdParameterName = "UseAdaptiveQualityThreshold";
|
---|
| 43 | private const string UseFixedEvaluationIntervalsParameterName = "UseFixedEvaluationIntervals";
|
---|
[14428] | 44 | private const string PreserveResultCompatibilityParameterName = "PreserveEvaluationResultCompatibility";
|
---|
[14072] | 45 |
|
---|
| 46 | #region parameters
|
---|
[14428] | 47 | public IFixedValueParameter<BoolValue> PreserveResultCompatibilityParameter {
|
---|
| 48 | get { return (IFixedValueParameter<BoolValue>)Parameters[PreserveResultCompatibilityParameterName]; }
|
---|
| 49 | }
|
---|
[14279] | 50 | public IFixedValueParameter<BoolValue> UseFixedEvaluationIntervalsParameter {
|
---|
| 51 | get { return (IFixedValueParameter<BoolValue>)Parameters[UseFixedEvaluationIntervalsParameterName]; }
|
---|
| 52 | }
|
---|
| 53 | public IFixedValueParameter<BoolValue> UseAdaptiveQualityThresholdParameter {
|
---|
| 54 | get { return (IFixedValueParameter<BoolValue>)Parameters[UseAdaptiveQualityThresholdParameterName]; }
|
---|
| 55 | }
|
---|
| 56 | public ILookupParameter<DoubleValue> ActualSelectionPressureParameter {
|
---|
| 57 | get { return (ILookupParameter<DoubleValue>)Parameters[ActualSelectionPressureParameterName]; }
|
---|
| 58 | }
|
---|
[14072] | 59 | public ILookupParameter<ResultCollection> ResultCollectionParameter {
|
---|
| 60 | get { return (ILookupParameter<ResultCollection>)Parameters[ResultCollectionParameterName]; }
|
---|
| 61 | }
|
---|
[14231] | 62 | public IValueParameter<BoolValue> AggregateStatisticsParameter {
|
---|
| 63 | get { return (IValueParameter<BoolValue>)Parameters[AggregateStatisticsParameterName]; }
|
---|
| 64 | }
|
---|
[14072] | 65 | public IValueLookupParameter<DoubleValue> ComparisonFactorParameter {
|
---|
| 66 | get { return (ValueLookupParameter<DoubleValue>)Parameters["ComparisonFactor"]; }
|
---|
| 67 | }
|
---|
| 68 | public IFixedValueParameter<PercentValue> RelativeParentChildQualityThresholdParameter {
|
---|
| 69 | get { return (IFixedValueParameter<PercentValue>)Parameters[RelativeParentChildQualityThresholdParameterName]; }
|
---|
| 70 | }
|
---|
| 71 | public IFixedValueParameter<PercentValue> RelativeFitnessEvaluationIntervalSizeParameter {
|
---|
| 72 | get { return (IFixedValueParameter<PercentValue>)Parameters[RelativeFitnessEvaluationIntervalSizeParameterName]; }
|
---|
| 73 | }
|
---|
| 74 | public IScopeTreeLookupParameter<DoubleValue> ParentQualitiesParameter { get { return (IScopeTreeLookupParameter<DoubleValue>)Parameters["ParentQualities"]; } }
|
---|
| 75 | #endregion
|
---|
| 76 |
|
---|
| 77 | #region parameter properties
|
---|
[14428] | 78 | public bool AggregateStatistics {
|
---|
| 79 | get { return AggregateStatisticsParameter.Value.Value; }
|
---|
| 80 | set { AggregateStatisticsParameter.Value.Value = value; }
|
---|
| 81 | }
|
---|
| 82 | public bool PreserveResultCompatibility {
|
---|
| 83 | get { return PreserveResultCompatibilityParameter.Value.Value; }
|
---|
| 84 | set { PreserveResultCompatibilityParameter.Value.Value = value; }
|
---|
| 85 | }
|
---|
[14279] | 86 | public bool UseFixedEvaluationIntervals {
|
---|
| 87 | get { return UseFixedEvaluationIntervalsParameter.Value.Value; }
|
---|
| 88 | set { UseFixedEvaluationIntervalsParameter.Value.Value = value; }
|
---|
| 89 | }
|
---|
| 90 | public bool UseAdaptiveQualityThreshold {
|
---|
| 91 | get { return UseAdaptiveQualityThresholdParameter.Value.Value; }
|
---|
| 92 | set { UseAdaptiveQualityThresholdParameter.Value.Value = value; }
|
---|
| 93 | }
|
---|
[14072] | 94 | public double RelativeParentChildQualityThreshold {
|
---|
| 95 | get { return RelativeParentChildQualityThresholdParameter.Value.Value; }
|
---|
| 96 | set { RelativeParentChildQualityThresholdParameter.Value.Value = value; }
|
---|
| 97 | }
|
---|
| 98 | public double RelativeFitnessEvaluationIntervalSize {
|
---|
| 99 | get { return RelativeFitnessEvaluationIntervalSizeParameter.Value.Value; }
|
---|
| 100 | set { RelativeFitnessEvaluationIntervalSizeParameter.Value.Value = value; }
|
---|
| 101 | }
|
---|
[14584] | 102 |
|
---|
[14072] | 103 | #endregion
|
---|
| 104 |
|
---|
| 105 | public override bool Maximization {
|
---|
| 106 | get { return true; }
|
---|
| 107 | }
|
---|
| 108 |
|
---|
[14584] | 109 | // keep track of statistics
|
---|
[16818] | 110 | [Storable]
|
---|
[14428] | 111 | public double AdjustedEvaluatedSolutions { get; set; }
|
---|
[16818] | 112 | [Storable]
|
---|
[14584] | 113 | public IntMatrix RejectedStats { get; set; }
|
---|
[16818] | 114 | [Storable]
|
---|
[14584] | 115 | public IntMatrix TotalStats { get; set; }
|
---|
[14428] | 116 |
|
---|
[14072] | 117 | public SymbolicRegressionSingleObjectiveOsgaEvaluator() {
|
---|
| 118 | Parameters.Add(new ValueLookupParameter<DoubleValue>("ComparisonFactor", "Determines if the quality should be compared to the better parent (1.0), to the worse (0.0) or to any linearly interpolated value between them."));
|
---|
[14104] | 119 | Parameters.Add(new FixedValueParameter<PercentValue>(RelativeParentChildQualityThresholdParameterName, new PercentValue(0.9)));
|
---|
[14072] | 120 | Parameters.Add(new FixedValueParameter<PercentValue>(RelativeFitnessEvaluationIntervalSizeParameterName, new PercentValue(0.1)));
|
---|
| 121 | Parameters.Add(new LookupParameter<ResultCollection>(ResultCollectionParameterName));
|
---|
| 122 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("ParentQualities") { ActualName = "Quality" });
|
---|
[14231] | 123 | Parameters.Add(new ValueParameter<BoolValue>(AggregateStatisticsParameterName, new BoolValue(false)));
|
---|
[14279] | 124 | Parameters.Add(new LookupParameter<DoubleValue>(ActualSelectionPressureParameterName));
|
---|
| 125 | Parameters.Add(new FixedValueParameter<BoolValue>(UseAdaptiveQualityThresholdParameterName, new BoolValue(false)));
|
---|
| 126 | Parameters.Add(new FixedValueParameter<BoolValue>(UseFixedEvaluationIntervalsParameterName, new BoolValue(false)));
|
---|
[14428] | 127 | Parameters.Add(new FixedValueParameter<BoolValue>(PreserveResultCompatibilityParameterName, new BoolValue(false)));
|
---|
[14584] | 128 |
|
---|
| 129 | RejectedStats = new IntMatrix();
|
---|
| 130 | TotalStats = new IntMatrix();
|
---|
[14072] | 131 | }
|
---|
| 132 |
|
---|
| 133 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 134 | private void AfterDeserialization() {
|
---|
[14279] | 135 | if (!Parameters.ContainsKey(ActualSelectionPressureParameterName))
|
---|
| 136 | Parameters.Add(new LookupParameter<DoubleValue>(ActualSelectionPressureParameterName));
|
---|
[14072] | 137 |
|
---|
[14279] | 138 | if (!Parameters.ContainsKey(UseAdaptiveQualityThresholdParameterName))
|
---|
| 139 | Parameters.Add(new FixedValueParameter<BoolValue>(UseAdaptiveQualityThresholdParameterName, new BoolValue(false)));
|
---|
[14104] | 140 |
|
---|
[14279] | 141 | if (!Parameters.ContainsKey(UseFixedEvaluationIntervalsParameterName))
|
---|
| 142 | Parameters.Add(new FixedValueParameter<BoolValue>(UseFixedEvaluationIntervalsParameterName, new BoolValue(false)));
|
---|
[14428] | 143 |
|
---|
| 144 | if (!Parameters.ContainsKey(PreserveResultCompatibilityParameterName))
|
---|
| 145 | Parameters.Add(new FixedValueParameter<BoolValue>(PreserveResultCompatibilityParameterName, new BoolValue(false)));
|
---|
[14072] | 146 | }
|
---|
| 147 |
|
---|
| 148 | [StorableConstructor]
|
---|
[16818] | 149 | protected SymbolicRegressionSingleObjectiveOsgaEvaluator(StorableConstructorFlag _) : base(_) {
|
---|
[14584] | 150 | TotalStats = new IntMatrix();
|
---|
| 151 | RejectedStats = new IntMatrix();
|
---|
| 152 | }
|
---|
[14072] | 153 |
|
---|
[14584] | 154 | protected SymbolicRegressionSingleObjectiveOsgaEvaluator(SymbolicRegressionSingleObjectiveOsgaEvaluator original,
|
---|
| 155 | Cloner cloner) : base(original, cloner) {
|
---|
| 156 | if (original.TotalStats != null)
|
---|
| 157 | TotalStats = cloner.Clone(original.TotalStats);
|
---|
[14072] | 158 |
|
---|
[14584] | 159 | if (original.RejectedStats != null)
|
---|
| 160 | RejectedStats = cloner.Clone(original.RejectedStats);
|
---|
| 161 | }
|
---|
| 162 |
|
---|
[14072] | 163 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 164 | return new SymbolicRegressionSingleObjectiveOsgaEvaluator(this, cloner);
|
---|
| 165 | }
|
---|
| 166 |
|
---|
| 167 | public override void ClearState() {
|
---|
| 168 | base.ClearState();
|
---|
[14104] | 169 | RejectedStats = new IntMatrix();
|
---|
| 170 | TotalStats = new IntMatrix();
|
---|
[14428] | 171 | AdjustedEvaluatedSolutions = 0;
|
---|
[14072] | 172 | }
|
---|
| 173 |
|
---|
| 174 | public override IOperation InstrumentedApply() {
|
---|
| 175 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
| 176 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
| 177 |
|
---|
| 178 | var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
| 179 | var estimationLimits = EstimationLimitsParameter.ActualValue;
|
---|
| 180 | var problemData = ProblemDataParameter.ActualValue;
|
---|
| 181 | var applyLinearScaling = ApplyLinearScalingParameter.ActualValue.Value;
|
---|
| 182 |
|
---|
| 183 | double quality;
|
---|
| 184 | var parentQualities = ParentQualitiesParameter.ActualValue;
|
---|
| 185 |
|
---|
| 186 | // parent subscopes are not present during evaluation of the initial population
|
---|
| 187 | if (parentQualities.Length > 0) {
|
---|
[14279] | 188 | quality = Calculate(interpreter, solution, estimationLimits, problemData, rows);
|
---|
[14072] | 189 | } else {
|
---|
| 190 | quality = Calculate(interpreter, solution, estimationLimits.Lower, estimationLimits.Upper, problemData, rows, applyLinearScaling);
|
---|
| 191 | }
|
---|
| 192 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
| 193 |
|
---|
| 194 | return base.InstrumentedApply();
|
---|
| 195 | }
|
---|
| 196 |
|
---|
| 197 | public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling) {
|
---|
| 198 | IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
|
---|
| 199 | IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
| 200 | OnlineCalculatorError errorState;
|
---|
| 201 |
|
---|
| 202 | double r;
|
---|
| 203 | if (applyLinearScaling) {
|
---|
| 204 | var rCalculator = new OnlinePearsonsRCalculator();
|
---|
| 205 | CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, rCalculator, problemData.Dataset.Rows);
|
---|
| 206 | errorState = rCalculator.ErrorState;
|
---|
| 207 | r = rCalculator.R;
|
---|
| 208 | } else {
|
---|
| 209 | IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
|
---|
| 210 | r = OnlinePearsonsRCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState);
|
---|
| 211 | }
|
---|
| 212 | if (errorState != OnlineCalculatorError.None) return double.NaN;
|
---|
| 213 | return r * r;
|
---|
| 214 | }
|
---|
| 215 |
|
---|
[14279] | 216 | private double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, DoubleLimit estimationLimits, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
[14585] | 217 | var lowerEstimationLimit = EstimationLimitsParameter.ActualValue.Lower;
|
---|
| 218 | var upperEstimationLimit = EstimationLimitsParameter.ActualValue.Upper;
|
---|
| 219 | var estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows).LimitToRange(lowerEstimationLimit, upperEstimationLimit);
|
---|
[14302] | 220 | var targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows).ToList();
|
---|
[14428] | 221 | var parentQualities = ParentQualitiesParameter.ActualValue.Select(x => x.Value);
|
---|
| 222 | var minQuality = double.MaxValue;
|
---|
| 223 | var maxQuality = double.MinValue;
|
---|
[14072] | 224 |
|
---|
[14428] | 225 | foreach (var quality in parentQualities) {
|
---|
| 226 | if (minQuality > quality) minQuality = quality;
|
---|
| 227 | if (maxQuality < quality) maxQuality = quality;
|
---|
| 228 | }
|
---|
| 229 |
|
---|
[14072] | 230 | var comparisonFactor = ComparisonFactorParameter.ActualValue.Value;
|
---|
| 231 | var parentQuality = minQuality + (maxQuality - minQuality) * comparisonFactor;
|
---|
| 232 |
|
---|
[14280] | 233 | #region fixed intervals
|
---|
[14279] | 234 | if (UseFixedEvaluationIntervals) {
|
---|
| 235 | double threshold = parentQuality * RelativeParentChildQualityThreshold;
|
---|
[14608] | 236 |
|
---|
[14279] | 237 | if (UseAdaptiveQualityThreshold) {
|
---|
| 238 | var actualSelectionPressure = ActualSelectionPressureParameter.ActualValue;
|
---|
| 239 | if (actualSelectionPressure != null)
|
---|
| 240 | threshold = parentQuality * (1 - actualSelectionPressure.Value / 100.0);
|
---|
[14072] | 241 | }
|
---|
[14585] | 242 |
|
---|
[14428] | 243 | var estimatedEnumerator = estimatedValues.GetEnumerator();
|
---|
| 244 | var targetEnumerator = targetValues.GetEnumerator();
|
---|
[14231] | 245 |
|
---|
[14428] | 246 | var rcalc = new OnlinePearsonsRCalculator();
|
---|
[14279] | 247 | var trainingPartitionSize = problemData.TrainingPartition.Size;
|
---|
| 248 | var interval = (int)Math.Floor(trainingPartitionSize * RelativeFitnessEvaluationIntervalSize);
|
---|
[14231] | 249 |
|
---|
[14428] | 250 | var calculatedRows = 0;
|
---|
| 251 | #region aggregate statistics
|
---|
| 252 | if (AggregateStatistics) {
|
---|
[14279] | 253 | var trainingEnd = problemData.TrainingPartition.End;
|
---|
[14608] | 254 |
|
---|
[14609] | 255 | double quality = 0;
|
---|
[14608] | 256 | int intervalCount = 0, rejectionInterval = 0;
|
---|
[14609] | 257 | var predictedRejected = false;
|
---|
[14608] | 258 |
|
---|
[14428] | 259 | while (estimatedEnumerator.MoveNext() & targetEnumerator.MoveNext()) {
|
---|
| 260 | var estimated = estimatedEnumerator.Current;
|
---|
| 261 | var target = targetEnumerator.Current;
|
---|
[14608] | 262 | rcalc.Add(target, estimated);
|
---|
[14428] | 263 | ++calculatedRows;
|
---|
| 264 | if (calculatedRows % interval == 0 || calculatedRows == trainingPartitionSize) {
|
---|
[14608] | 265 | intervalCount++;
|
---|
| 266 | if (predictedRejected) continue;
|
---|
[14428] | 267 | var r = rcalc.ErrorState == OnlineCalculatorError.None ? rcalc.R : 0d;
|
---|
[14608] | 268 | quality = r * r;
|
---|
| 269 | if (!(quality > threshold)) {
|
---|
| 270 | rejectionInterval = intervalCount - 1;
|
---|
[14428] | 271 | predictedRejected = true;
|
---|
| 272 | }
|
---|
[14279] | 273 | }
|
---|
[14608] | 274 | }
|
---|
| 275 | var actualQuality = rcalc.ErrorState == OnlineCalculatorError.None ? rcalc.R : 0d;
|
---|
| 276 | actualQuality *= actualQuality;
|
---|
[14279] | 277 |
|
---|
[14609] | 278 | if (!predictedRejected) quality = actualQuality;
|
---|
| 279 |
|
---|
[14608] | 280 | var actuallyRejected = !(actualQuality > parentQuality);
|
---|
[14279] | 281 |
|
---|
[14608] | 282 | if (RejectedStats.Rows == 0 || TotalStats.Rows == 0) {
|
---|
| 283 | RejectedStats = new IntMatrix(2, intervalCount + 1);
|
---|
| 284 | RejectedStats.RowNames = new[] { "Predicted", "Actual" };
|
---|
| 285 | RejectedStats.ColumnNames = Enumerable.Range(1, RejectedStats.Columns).Select(x => string.Format("0-{0}", Math.Min(trainingEnd, x * interval)));
|
---|
| 286 | TotalStats = new IntMatrix(2, 1);
|
---|
| 287 | TotalStats.RowNames = new[] { "Predicted", "Actual" };
|
---|
| 288 | TotalStats.ColumnNames = new[] { "Rejected" };
|
---|
| 289 | }
|
---|
[14584] | 290 |
|
---|
[14608] | 291 | if (actuallyRejected) {
|
---|
| 292 | TotalStats[0, 0]++; // prediction true
|
---|
| 293 | TotalStats[1, 0]++;
|
---|
| 294 | RejectedStats[0, rejectionInterval]++;
|
---|
| 295 | RejectedStats[1, rejectionInterval]++;
|
---|
| 296 | } else {
|
---|
| 297 | if (predictedRejected) {
|
---|
| 298 | RejectedStats[0, rejectionInterval]++;
|
---|
| 299 | TotalStats[0, 0]++;
|
---|
[14428] | 300 | }
|
---|
[14279] | 301 | }
|
---|
| 302 | return quality;
|
---|
[14428] | 303 | }
|
---|
| 304 | #endregion
|
---|
| 305 | else {
|
---|
| 306 | while (estimatedEnumerator.MoveNext() & targetEnumerator.MoveNext()) {
|
---|
| 307 | rcalc.Add(targetEnumerator.Current, estimatedEnumerator.Current);
|
---|
| 308 | ++calculatedRows;
|
---|
| 309 | if (calculatedRows % interval == 0 || calculatedRows == trainingPartitionSize) {
|
---|
| 310 | var q = rcalc.ErrorState != OnlineCalculatorError.None ? double.NaN : rcalc.R;
|
---|
[14279] | 311 | var quality = q * q;
|
---|
[14428] | 312 | if (!(quality > threshold)) {
|
---|
| 313 | AdjustedEvaluatedSolutions += (double)calculatedRows / problemData.TrainingPartition.Size;
|
---|
[14279] | 314 | return quality;
|
---|
[14428] | 315 | }
|
---|
[14279] | 316 | }
|
---|
| 317 | }
|
---|
[14428] | 318 | var r = rcalc.ErrorState != OnlineCalculatorError.None ? double.NaN : rcalc.R;
|
---|
[14279] | 319 | var actualQuality = r * r;
|
---|
[14428] | 320 | AdjustedEvaluatedSolutions += 1d;
|
---|
[14279] | 321 | return actualQuality;
|
---|
[14231] | 322 | }
|
---|
[14428] | 323 | #endregion
|
---|
[14231] | 324 | } else {
|
---|
[14301] | 325 | var lsc = new OnlineLinearScalingParameterCalculator();
|
---|
| 326 | var rcalc = new OnlinePearsonsRCalculator();
|
---|
[14428] | 327 | var interval = (int)Math.Round(RelativeFitnessEvaluationIntervalSize * problemData.TrainingPartition.Size);
|
---|
| 328 | var quality = 0d;
|
---|
| 329 | var calculatedRows = 0;
|
---|
[14302] | 330 |
|
---|
[14428] | 331 | var cache = PreserveResultCompatibility ? new List<double>(problemData.TrainingPartition.Size) : null;
|
---|
| 332 | foreach (var target in estimatedValues.Zip(targetValues, (e, t) => new { EstimatedValue = e, ActualValue = t })) {
|
---|
| 333 | if (cache != null)
|
---|
| 334 | cache.Add(target.EstimatedValue);
|
---|
[14302] | 335 |
|
---|
[14428] | 336 | lsc.Add(target.EstimatedValue, target.ActualValue);
|
---|
| 337 | rcalc.Add(target.EstimatedValue, target.ActualValue);
|
---|
| 338 |
|
---|
[14302] | 339 | calculatedRows++;
|
---|
| 340 |
|
---|
[14428] | 341 | if (calculatedRows % interval != 0) continue;
|
---|
[14302] | 342 |
|
---|
[14428] | 343 | var alpha = lsc.Alpha;
|
---|
| 344 | var beta = lsc.Beta;
|
---|
| 345 | if (lsc.ErrorState != OnlineCalculatorError.None) {
|
---|
| 346 | alpha = 0;
|
---|
| 347 | beta = 1;
|
---|
| 348 | }
|
---|
[14302] | 349 |
|
---|
[14428] | 350 | var calc = (OnlinePearsonsRCalculator)rcalc.Clone();
|
---|
| 351 | foreach (var t in targetValues.Skip(calculatedRows)) {
|
---|
| 352 | var s = (t - alpha) / beta; // scaled target
|
---|
| 353 | calc.Add(s, t); // add pair (scaled, target) to the calculator
|
---|
| 354 | }
|
---|
| 355 | var r = calc.ErrorState == OnlineCalculatorError.None ? calc.R : 0d;
|
---|
| 356 | quality = r * r;
|
---|
[14302] | 357 |
|
---|
[14428] | 358 | if (!(quality > parentQuality)) {
|
---|
| 359 | AdjustedEvaluatedSolutions += (double)calculatedRows / problemData.TrainingPartition.Size;
|
---|
| 360 | return quality;
|
---|
[14231] | 361 | }
|
---|
[14302] | 362 | }
|
---|
[14428] | 363 | if (PreserveResultCompatibility) {
|
---|
| 364 | // get quality for all the rows. to ensure reproducibility of results between this evaluator
|
---|
| 365 | // and the standard one, we calculate the quality in an identical way (otherwise the returned
|
---|
| 366 | // quality could be slightly off due to rounding errors (in the range 1e-15 to 1e-16)
|
---|
| 367 | var applyLinearScaling = ApplyLinearScalingParameter.ActualValue.Value;
|
---|
| 368 | double r;
|
---|
| 369 | OnlineCalculatorError calculatorError;
|
---|
[14302] | 370 |
|
---|
[14428] | 371 | if (applyLinearScaling) {
|
---|
| 372 | var alpha = lsc.Alpha;
|
---|
| 373 | var beta = lsc.Beta;
|
---|
| 374 | if (lsc.ErrorState != OnlineCalculatorError.None) {
|
---|
| 375 | alpha = 0;
|
---|
| 376 | beta = 1;
|
---|
| 377 | }
|
---|
| 378 | var boundedEstimatedValues = cache.Select(x => x * beta + alpha).LimitToRange(estimationLimits.Lower, estimationLimits.Upper);
|
---|
| 379 | r = OnlinePearsonsRCalculator.Calculate(boundedEstimatedValues, targetValues, out calculatorError);
|
---|
| 380 | } else {
|
---|
| 381 | var boundedEstimatedValues = cache.LimitToRange(estimationLimits.Lower, estimationLimits.Upper);
|
---|
| 382 | r = OnlinePearsonsRCalculator.Calculate(boundedEstimatedValues, targetValues, out calculatorError);
|
---|
[14301] | 383 | }
|
---|
[14428] | 384 | quality = calculatorError == OnlineCalculatorError.None ? r * r : 0d;
|
---|
[14231] | 385 | }
|
---|
[16818] | 386 | AdjustedEvaluatedSolutions++;
|
---|
[14279] | 387 | return quality;
|
---|
[14072] | 388 | }
|
---|
| 389 | }
|
---|
| 390 |
|
---|
| 391 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
| 392 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
| 393 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
| 394 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
| 395 |
|
---|
| 396 | var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
| 397 | var estimationLimits = EstimationLimitsParameter.ActualValue;
|
---|
| 398 | var applyLinearScaling = ApplyLinearScalingParameter.ActualValue.Value;
|
---|
| 399 |
|
---|
| 400 | double r2 = Calculate(interpreter, tree, estimationLimits.Lower, estimationLimits.Upper, problemData, rows, applyLinearScaling);
|
---|
| 401 |
|
---|
| 402 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
| 403 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
| 404 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
| 405 |
|
---|
| 406 | return r2;
|
---|
| 407 | }
|
---|
| 408 | }
|
---|
| 409 | }
|
---|