#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Encodings.MoveVectorEncoding; using HeuristicLab.Data.MoveVectorData; namespace HeuristicLab.Encodings.BinaryVectorEncoding { /// /// N point crossover for move vectors. /// /// /// It is implemented as described in Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg.. /// [Item("NPointCrossover", "N point crossover for move vectors. It is implemented as described in Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg.")] [StorableClass] public sealed class NPointCrossover : MoveVectorCrossover { /// /// Number of crossover points. /// public IValueLookupParameter NParameter { get { return (IValueLookupParameter)Parameters["N"]; } } [StorableConstructor] private NPointCrossover(bool deserializing) : base(deserializing) { } private NPointCrossover(NPointCrossover original, Cloner cloner) : base(original, cloner) { } /// /// Initializes a new instance of /// public NPointCrossover() : base() { Parameters.Add(new ValueLookupParameter("N", "Number of crossover points", new IntValue(2))); } public override IDeepCloneable Clone(Cloner cloner) { return new NPointCrossover(this, cloner); } public static MoveVector Apply(IRandom random, MoveVector parent1, MoveVector parent2, IntValue n) { if (parent1.Length != parent2.Length) throw new ArgumentException("NPointCrossover: The parents are of different length."); if (n.Value > parent1.Length) throw new ArgumentException("NPointCrossover: There cannot be more breakpoints than the size of the parents."); if (n.Value < 1) throw new ArgumentException("NPointCrossover: N cannot be < 1."); int length = parent1.Length; MoveVector result = new MoveVector(length, parent1.MoveTypes); int[] breakpoints = new int[n.Value]; //choose break points List breakpointPool = new List(); for (int i = 0; i < length; i++) breakpointPool.Add(i); for (int i = 0; i < n.Value; i++) { int index = random.Next(breakpointPool.Count); breakpoints[i] = breakpointPool[index]; breakpointPool.RemoveAt(index); } Array.Sort(breakpoints); //perform crossover int arrayIndex = 0; int breakPointIndex = 0; bool firstParent = true; while (arrayIndex < length) { if (breakPointIndex < breakpoints.Length && arrayIndex == breakpoints[breakPointIndex]) { breakPointIndex++; firstParent = !firstParent; } if (firstParent) result[arrayIndex] = parent1[arrayIndex]; else result[arrayIndex] = parent2[arrayIndex]; arrayIndex++; } return result; } protected override MoveVector Cross(IRandom random, ItemArray parents) { if (parents.Length != 2) throw new ArgumentException("ERROR in NPointCrossover: The number of parents is not equal to 2"); if (NParameter.ActualValue == null) throw new InvalidOperationException("NPointCrossover: Parameter " + NParameter.ActualName + " could not be found."); return Apply(random, parents[0], parents[1], NParameter.ActualValue); } } }