#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Random;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
[Item("DeterministicBestCrossover", "An operator which performs subtree swapping by choosing the best subtree to be swapped in a certain position:\n" +
"- Take two parent individuals P0 and P1\n" +
"- Randomly choose a crossover point C from P0\n" +
"- Test all nodes from P1 to determine the one that produces the best child when inserted at place C in P0")]
public sealed class SymbolicDataAnalysisExpressionDeterministicBestCrossover : SymbolicDataAnalysisExpressionCrossover where T : class, IDataAnalysisProblemData {
[StorableConstructor]
private SymbolicDataAnalysisExpressionDeterministicBestCrossover(bool deserializing) : base(deserializing) { }
private SymbolicDataAnalysisExpressionDeterministicBestCrossover(SymbolicDataAnalysisExpressionCrossover original, Cloner cloner)
: base(original, cloner) {
}
public SymbolicDataAnalysisExpressionDeterministicBestCrossover()
: base() {
name = "DeterministicBestCrossover";
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicDataAnalysisExpressionDeterministicBestCrossover(this, cloner);
}
public override ISymbolicExpressionTree Crossover(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) {
if (this.ExecutionContext == null)
throw new InvalidOperationException("ExecutionContext not set.");
List rows = GenerateRowsToEvaluate().ToList();
T problemData = ProblemDataParameter.ActualValue;
ISymbolicDataAnalysisSingleObjectiveEvaluator evaluator = EvaluatorParameter.ActualValue;
return Cross(random, parent0, parent1, this.ExecutionContext, evaluator, problemData, rows, MaximumSymbolicExpressionTreeDepth.Value, MaximumSymbolicExpressionTreeLength.Value);
}
///
/// Takes two parent individuals P0 and P1.
/// Randomly choose a node i from the first parent, then test all nodes j from the second parent to determine the best child that would be obtained by swapping i for j.
///
public static ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1, IExecutionContext context,
ISymbolicDataAnalysisSingleObjectiveEvaluator evaluator, T problemData, List rows, int maxDepth, int maxLength) {
var crossoverPoints0 = new List();
parent0.Root.ForEachNodePostfix((n) => {
if (n.Parent != null && n.Parent != parent0.Root)
crossoverPoints0.Add(new CutPoint(n.Parent, n));
});
CutPoint crossoverPoint0 = crossoverPoints0.SampleRandom(random);
int level = parent0.Root.GetBranchLevel(crossoverPoint0.Child);
int length = parent0.Root.GetLength() - crossoverPoint0.Child.GetLength();
var allowedBranches = new List();
parent1.Root.ForEachNodePostfix((n) => {
if (n.Parent != null && n.Parent != parent1.Root) {
if (n.GetDepth() + level <= maxDepth && n.GetLength() + length <= maxLength && crossoverPoint0.IsMatchingPointType(n))
allowedBranches.Add(n);
}
});
if (allowedBranches.Count == 0)
return parent0;
// create symbols in order to improvize an ad-hoc tree so that the child can be evaluated
ISymbolicExpressionTreeNode selectedBranch = null;
var nodeQualities = new List>();
var originalChild = crossoverPoint0.Child;
foreach (var node in allowedBranches) {
var parent = node.Parent;
Swap(crossoverPoint0, node); // the swap will set the nodes parent to crossoverPoint0.Parent
IExecutionContext childContext = new ExecutionContext(context, evaluator, context.Scope);
double quality = evaluator.Evaluate(childContext, parent0, problemData, rows);
Swap(crossoverPoint0, originalChild); // swap the child back (so that the next swap will not affect the currently swapped node from parent1)
nodeQualities.Add(new Tuple(node, quality));
node.Parent = parent; // restore correct parent
}
nodeQualities.Sort((a, b) => a.Item2.CompareTo(b.Item2));
selectedBranch = evaluator.Maximization ? nodeQualities.Last().Item1 : nodeQualities.First().Item1;
// swap the node that would create the best offspring
Swap(crossoverPoint0, selectedBranch);
return parent0;
}
}
}