#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Random; namespace HeuristicLab.Problems.DataAnalysis.Symbolic { [Item("DeterministicBestCrossover", "An operator which performs subtree swapping by choosing the best subtree to be swapped in a certain position:\n" + "- Take two parent individuals P0 and P1\n" + "- Randomly choose a crossover point C from P0\n" + "- Test all nodes from P1 to determine the one that produces the best child when inserted at place C in P0")] public sealed class SymbolicDataAnalysisExpressionDeterministicBestCrossover : SymbolicDataAnalysisExpressionCrossover where T : class, IDataAnalysisProblemData { [StorableConstructor] private SymbolicDataAnalysisExpressionDeterministicBestCrossover(bool deserializing) : base(deserializing) { } private SymbolicDataAnalysisExpressionDeterministicBestCrossover(SymbolicDataAnalysisExpressionCrossover original, Cloner cloner) : base(original, cloner) { } public SymbolicDataAnalysisExpressionDeterministicBestCrossover() : base() { name = "DeterministicBestCrossover"; } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicDataAnalysisExpressionDeterministicBestCrossover(this, cloner); } public override ISymbolicExpressionTree Crossover(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) { if (this.ExecutionContext == null) throw new InvalidOperationException("ExecutionContext not set."); List rows = GenerateRowsToEvaluate().ToList(); T problemData = ProblemDataParameter.ActualValue; ISymbolicDataAnalysisSingleObjectiveEvaluator evaluator = EvaluatorParameter.ActualValue; return Cross(random, parent0, parent1, this.ExecutionContext, evaluator, problemData, rows, MaximumSymbolicExpressionTreeDepth.Value, MaximumSymbolicExpressionTreeLength.Value); } /// /// Takes two parent individuals P0 and P1. /// Randomly choose a node i from the first parent, then test all nodes j from the second parent to determine the best child that would be obtained by swapping i for j. /// public static ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1, IExecutionContext context, ISymbolicDataAnalysisSingleObjectiveEvaluator evaluator, T problemData, List rows, int maxDepth, int maxLength) { var crossoverPoints0 = new List(); parent0.Root.ForEachNodePostfix((n) => { if (n.Parent != null && n.Parent != parent0.Root) crossoverPoints0.Add(new CutPoint(n.Parent, n)); }); CutPoint crossoverPoint0 = crossoverPoints0.SampleRandom(random); int level = parent0.Root.GetBranchLevel(crossoverPoint0.Child); int length = parent0.Root.GetLength() - crossoverPoint0.Child.GetLength(); var allowedBranches = new List(); parent1.Root.ForEachNodePostfix((n) => { if (n.Parent != null && n.Parent != parent1.Root) { if (n.GetDepth() + level <= maxDepth && n.GetLength() + length <= maxLength && crossoverPoint0.IsMatchingPointType(n)) allowedBranches.Add(n); } }); if (allowedBranches.Count == 0) return parent0; // create symbols in order to improvize an ad-hoc tree so that the child can be evaluated ISymbolicExpressionTreeNode selectedBranch = null; var nodeQualities = new List>(); var originalChild = crossoverPoint0.Child; foreach (var node in allowedBranches) { var parent = node.Parent; Swap(crossoverPoint0, node); // the swap will set the nodes parent to crossoverPoint0.Parent IExecutionContext childContext = new ExecutionContext(context, evaluator, context.Scope); double quality = evaluator.Evaluate(childContext, parent0, problemData, rows); Swap(crossoverPoint0, originalChild); // swap the child back (so that the next swap will not affect the currently swapped node from parent1) nodeQualities.Add(new Tuple(node, quality)); node.Parent = parent; // restore correct parent } nodeQualities.Sort((a, b) => a.Item2.CompareTo(b.Item2)); selectedBranch = evaluator.Maximization ? nodeQualities.Last().Item1 : nodeQualities.First().Item1; // swap the node that would create the best offspring Swap(crossoverPoint0, selectedBranch); return parent0; } } }