#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.RealVectorEncoding;
using HEAL.Attic;
namespace HeuristicLab.Problems.TestFunctions {
///
/// The Sum Squares function is defined as sum(i * x_i * x_i) for i = 1..n
///
[Item("SumSquares", "Evaluates the sum squares function on a given point. The optimum of this function is 0 at the origin. The Sum Squares function is defined as sum(i * x_i * x_i) for i = 1..n.")]
[StorableType("B7DFB7C7-0218-4D42-85F0-E427E99DB621")]
public class SumSquares : SingleObjectiveTestFunction {
///
/// Returns false as the Sum Squares function is a minimization problem.
///
public override bool Maximization {
get { return false; }
}
///
/// Gets the optimum function value (0).
///
public override double BestKnownQuality {
get { return 0; }
}
///
/// Gets the lower and upper bound of the function.
///
public override DoubleMatrix Bounds {
get { return new DoubleMatrix(new double[,] { { -10, 10 } }); }
}
///
/// Gets the minimum problem size (1).
///
public override int MinimumProblemSize {
get { return 1; }
}
///
/// Gets the (theoretical) maximum problem size (2^31 - 1).
///
public override int MaximumProblemSize {
get { return int.MaxValue; }
}
[StorableConstructor]
protected SumSquares(StorableConstructorFlag _) : base(_) { }
protected SumSquares(SumSquares original, Cloner cloner) : base(original, cloner) { }
public SumSquares() : base() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new SumSquares(this, cloner);
}
public override RealVector GetBestKnownSolution(int dimension) {
return new RealVector(dimension);
}
///
/// Evaluates the test function for a specific .
///
/// N-dimensional point for which the test function should be evaluated.
/// The result value of the Sum Squares function at the given point.
public static double Apply(RealVector point) {
double result = 0;
for (int i = 0; i < point.Length; i++) {
result += (i + 1) * point[i] * point[i];
}
return result;
}
///
/// Evaluates the test function for a specific .
///
/// Calls .
/// N-dimensional point for which the test function should be evaluated.
/// The result value of the Sum Squares function at the given point.
public override double Evaluate(RealVector point) {
return Apply(point);
}
}
}