#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.RealVectorEncoding;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.TestFunctions {
///
/// Base class for a test function evaluator.
///
[Item("Single-Objective Function", "Base class for single objective functions.")]
[StorableClass]
public abstract class SingleObjectiveTestFunction : ParameterizedNamedItem, ISingleObjectiveTestFunction {
///
/// These operators should not change their name through the GUI
///
public override bool CanChangeName {
get { return false; }
}
///
/// Returns whether the actual function constitutes a maximization or minimization problem.
///
public abstract bool Maximization { get; }
///
/// Gets the lower and upper bound of the function.
///
public abstract DoubleMatrix Bounds { get; }
///
/// Gets the optimum function value.
///
public abstract double BestKnownQuality { get; }
///
/// Gets the minimum problem size.
///
public abstract int MinimumProblemSize { get; }
///
/// Gets the maximum problem size.
///
public abstract int MaximumProblemSize { get; }
[StorableConstructor]
protected SingleObjectiveTestFunction(bool deserializing) : base(deserializing) { }
protected SingleObjectiveTestFunction(SingleObjectiveTestFunction original, Cloner cloner) : base(original, cloner) { }
protected SingleObjectiveTestFunction() : base() { }
public virtual double Evaluate2D(double x, double y) {
return Evaluate(new RealVector(new double[] { x, y }));
}
///
/// Evaluates the test function for a specific .
///
/// N-dimensional point for which the test function should be evaluated.
/// The result value of the function at the given point.
public abstract double Evaluate(RealVector point);
///
/// Gets the best known solution for this function.
///
public abstract RealVector GetBestKnownSolution(int dimension);
}
}