[13672] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17226] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[13672] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 | using System;
|
---|
| 22 | using System.Linq;
|
---|
[16807] | 23 | using HEAL.Attic;
|
---|
[17225] | 24 | using HeuristicLab.Analysis;
|
---|
[13421] | 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
| 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
[13620] | 31 | using HeuristicLab.Problems.Instances;
|
---|
[13421] | 32 |
|
---|
[14111] | 33 | namespace HeuristicLab.Problems.TestFunctions.MultiObjective {
|
---|
[16723] | 34 | [StorableType("AB0C6A73-C432-46FD-AE3B-9841EAB2478C")]
|
---|
[14073] | 35 | [Creatable(CreatableAttribute.Categories.Problems, Priority = 95)]
|
---|
| 36 | [Item("Test Function (multi-objective)", "Test functions with real valued inputs and multiple objectives.")]
|
---|
[17225] | 37 | public class MultiObjectiveTestFunctionProblem : RealVectorMultiObjectiveProblem, IProblemInstanceConsumer<MOTFData>, IMultiObjectiveProblemDefinition<RealVectorEncoding, RealVector> {
|
---|
[13672] | 38 | #region Parameter Properties
|
---|
[14073] | 39 | public IFixedValueParameter<IntValue> ProblemSizeParameter {
|
---|
[13421] | 40 | get { return (IFixedValueParameter<IntValue>)Parameters["ProblemSize"]; }
|
---|
| 41 | }
|
---|
[14073] | 42 | public IFixedValueParameter<IntValue> ObjectivesParameter {
|
---|
[13672] | 43 | get { return (IFixedValueParameter<IntValue>)Parameters["Objectives"]; }
|
---|
[13421] | 44 | }
|
---|
[14073] | 45 | public IValueParameter<DoubleMatrix> BoundsParameter {
|
---|
[13421] | 46 | get { return (IValueParameter<DoubleMatrix>)Parameters["Bounds"]; }
|
---|
| 47 | }
|
---|
| 48 | public IValueParameter<IMultiObjectiveTestFunction> TestFunctionParameter {
|
---|
| 49 | get { return (IValueParameter<IMultiObjectiveTestFunction>)Parameters["TestFunction"]; }
|
---|
| 50 | }
|
---|
| 51 | #endregion
|
---|
| 52 |
|
---|
| 53 | #region Properties
|
---|
[14073] | 54 | public override bool[] Maximization {
|
---|
| 55 | get {
|
---|
[16807] | 56 | //necessary because of virtual member call in base ctor
|
---|
| 57 | if (!Parameters.ContainsKey("TestFunction")) return new bool[0];
|
---|
| 58 | return TestFunction.Maximization(Objectives).ToArray();
|
---|
[14073] | 59 | }
|
---|
[13672] | 60 | }
|
---|
| 61 |
|
---|
| 62 | public int ProblemSize {
|
---|
[13421] | 63 | get { return ProblemSizeParameter.Value.Value; }
|
---|
| 64 | set { ProblemSizeParameter.Value.Value = value; }
|
---|
| 65 | }
|
---|
[16950] | 66 | public new int Objectives {
|
---|
[13672] | 67 | get { return ObjectivesParameter.Value.Value; }
|
---|
| 68 | set { ObjectivesParameter.Value.Value = value; }
|
---|
[13421] | 69 | }
|
---|
| 70 | public DoubleMatrix Bounds {
|
---|
| 71 | get { return BoundsParameter.Value; }
|
---|
| 72 | set { BoundsParameter.Value = value; }
|
---|
| 73 | }
|
---|
| 74 | public IMultiObjectiveTestFunction TestFunction {
|
---|
| 75 | get { return TestFunctionParameter.Value; }
|
---|
| 76 | set { TestFunctionParameter.Value = value; }
|
---|
| 77 | }
|
---|
| 78 | #endregion
|
---|
| 79 |
|
---|
| 80 | [StorableConstructor]
|
---|
[16723] | 81 | protected MultiObjectiveTestFunctionProblem(StorableConstructorFlag _) : base(_) { }
|
---|
[14073] | 82 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 83 | private void AfterDeserialization() {
|
---|
| 84 | RegisterEventHandlers();
|
---|
| 85 | }
|
---|
| 86 |
|
---|
[17225] | 87 | protected MultiObjectiveTestFunctionProblem(MultiObjectiveTestFunctionProblem original, Cloner cloner) : base(original, cloner) {
|
---|
[13421] | 88 | RegisterEventHandlers();
|
---|
| 89 | }
|
---|
[14073] | 90 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 91 | return new MultiObjectiveTestFunctionProblem(this, cloner);
|
---|
| 92 | }
|
---|
| 93 |
|
---|
[17225] | 94 | public MultiObjectiveTestFunctionProblem() : base() {
|
---|
[13421] | 95 | Parameters.Add(new FixedValueParameter<IntValue>("ProblemSize", "The dimensionality of the problem instance (number of variables in the function).", new IntValue(2)));
|
---|
[13672] | 96 | Parameters.Add(new FixedValueParameter<IntValue>("Objectives", "The dimensionality of the solution vector (number of objectives).", new IntValue(2)));
|
---|
[13448] | 97 | Parameters.Add(new ValueParameter<DoubleMatrix>("Bounds", "The bounds of the solution given as either one line for all variables or a line for each variable. The first column specifies lower bound, the second upper bound.", new DoubleMatrix(new double[,] { { -4, 4 } })));
|
---|
[13421] | 98 | Parameters.Add(new ValueParameter<IMultiObjectiveTestFunction>("TestFunction", "The function that is to be optimized.", new Fonseca()));
|
---|
| 99 |
|
---|
| 100 | Encoding.LengthParameter = ProblemSizeParameter;
|
---|
| 101 | Encoding.BoundsParameter = BoundsParameter;
|
---|
[13725] | 102 | BestKnownFrontParameter.Hidden = true;
|
---|
[13421] | 103 |
|
---|
[14073] | 104 | UpdateParameterValues();
|
---|
[13421] | 105 | InitializeOperators();
|
---|
| 106 | RegisterEventHandlers();
|
---|
| 107 | }
|
---|
[14073] | 108 |
|
---|
| 109 | private void RegisterEventHandlers() {
|
---|
| 110 | TestFunctionParameter.ValueChanged += TestFunctionParameterOnValueChanged;
|
---|
| 111 | ProblemSizeParameter.Value.ValueChanged += ProblemSizeOnValueChanged;
|
---|
| 112 | ObjectivesParameter.Value.ValueChanged += ObjectivesOnValueChanged;
|
---|
[13421] | 113 | }
|
---|
| 114 |
|
---|
[14073] | 115 |
|
---|
[16807] | 116 | public override void Analyze(RealVector[] solutions, double[][] qualities, ResultCollection results, IRandom random) {
|
---|
| 117 | base.Analyze(solutions, qualities, results, random);
|
---|
[17225] | 118 | if (results.ContainsKey("Pareto Front"))
|
---|
[13725] | 119 | ((DoubleMatrix)results["Pareto Front"].Value).SortableView = true;
|
---|
[13421] | 120 | }
|
---|
| 121 |
|
---|
[13776] | 122 | /// <summary>
|
---|
| 123 | /// Checks whether a given solution violates the contraints of this function.
|
---|
| 124 | /// </summary>
|
---|
| 125 | /// <param name="individual"></param>
|
---|
| 126 | /// <returns>a double array that holds the distances that describe how much every contraint is violated (0 is not violated). If the current TestFunction does not have constraints an array of length 0 is returned</returns>
|
---|
[14068] | 127 | public double[] CheckContraints(RealVector individual) {
|
---|
| 128 | var constrainedTestFunction = (IConstrainedTestFunction)TestFunction;
|
---|
[17225] | 129 | return constrainedTestFunction != null ? constrainedTestFunction.CheckConstraints(individual, Objectives) : new double[0];
|
---|
[13776] | 130 | }
|
---|
| 131 |
|
---|
[16807] | 132 | public override double[] Evaluate(RealVector solution, IRandom random) {
|
---|
| 133 | return TestFunction.Evaluate(solution, Objectives);
|
---|
[13421] | 134 | }
|
---|
[13448] | 135 |
|
---|
[13421] | 136 |
|
---|
[13620] | 137 | public void Load(MOTFData data) {
|
---|
[14065] | 138 | TestFunction = data.TestFunction;
|
---|
[13620] | 139 | }
|
---|
[13448] | 140 |
|
---|
[14073] | 141 | #region Events
|
---|
| 142 | private void UpdateParameterValues() {
|
---|
[17225] | 143 | Parameters.Remove(MaximizationParameterName);
|
---|
| 144 | Parameters.Add(new FixedValueParameter<BoolArray>(MaximizationParameterName, "Set to false if the problem should be minimized.", (BoolArray)new BoolArray(TestFunction.Maximization(Objectives)).AsReadOnly()));
|
---|
[14073] | 145 |
|
---|
[17225] | 146 | Parameters.Remove(BestKnownFrontParameterName);
|
---|
[14085] | 147 | var front = TestFunction.OptimalParetoFront(Objectives);
|
---|
[17225] | 148 | var bkf = front != null ? (DoubleMatrix)Utilities.ToMatrix(front).AsReadOnly() : null;
|
---|
[17261] | 149 | Parameters.Add(new FixedValueParameter<DoubleMatrix>(BestKnownFrontParameterName, "A double matrix representing the best known qualities for this problem (aka points on the Pareto front). Points are to be given in a row-wise fashion.", bkf));
|
---|
[14085] | 150 |
|
---|
[17225] | 151 | Parameters.Remove(ReferencePointParameterName);
|
---|
[17261] | 152 | Parameters.Add(new FixedValueParameter<DoubleArray>(ReferencePointParameterName, "The reference point for hypervolume calculations on this problem", new DoubleArray(TestFunction.ReferencePoint(Objectives))));
|
---|
[14085] | 153 |
|
---|
| 154 | BoundsParameter.Value = new DoubleMatrix(TestFunction.Bounds(Objectives));
|
---|
[13672] | 155 | }
|
---|
| 156 |
|
---|
[13421] | 157 | protected override void OnEncodingChanged() {
|
---|
| 158 | base.OnEncodingChanged();
|
---|
[14073] | 159 | UpdateParameterValues();
|
---|
[13421] | 160 | }
|
---|
[17225] | 161 |
|
---|
[13421] | 162 | protected override void OnEvaluatorChanged() {
|
---|
| 163 | base.OnEvaluatorChanged();
|
---|
[14073] | 164 | UpdateParameterValues();
|
---|
[13421] | 165 | }
|
---|
[13448] | 166 |
|
---|
[13421] | 167 | private void TestFunctionParameterOnValueChanged(object sender, EventArgs eventArgs) {
|
---|
[14073] | 168 | ProblemSize = Math.Max(TestFunction.MinimumSolutionLength, Math.Min(ProblemSize, TestFunction.MaximumSolutionLength));
|
---|
| 169 | Objectives = Math.Max(TestFunction.MinimumObjectives, Math.Min(Objectives, TestFunction.MaximumObjectives));
|
---|
[17225] | 170 | Parameters.Remove(ReferencePointParameterName);
|
---|
[17261] | 171 | Parameters.Add(new FixedValueParameter<DoubleArray>(ReferencePointParameterName, "The reference point for hypervolume calculations on this problem", new DoubleArray(TestFunction.ReferencePoint(Objectives))));
|
---|
[14073] | 172 | UpdateParameterValues();
|
---|
[13421] | 173 | OnReset();
|
---|
| 174 | }
|
---|
| 175 |
|
---|
| 176 | private void ProblemSizeOnValueChanged(object sender, EventArgs eventArgs) {
|
---|
[14073] | 177 | ProblemSize = Math.Min(TestFunction.MaximumSolutionLength, Math.Max(TestFunction.MinimumSolutionLength, ProblemSize));
|
---|
| 178 | UpdateParameterValues();
|
---|
[13421] | 179 | }
|
---|
| 180 |
|
---|
[13672] | 181 | private void ObjectivesOnValueChanged(object sender, EventArgs eventArgs) {
|
---|
[14073] | 182 | Objectives = Math.Min(TestFunction.MaximumObjectives, Math.Max(TestFunction.MinimumObjectives, Objectives));
|
---|
| 183 | UpdateParameterValues();
|
---|
[13421] | 184 | }
|
---|
| 185 | #endregion
|
---|
| 186 |
|
---|
| 187 | #region Helpers
|
---|
| 188 | private void InitializeOperators() {
|
---|
[13672] | 189 | Operators.Add(new CrowdingAnalyzer());
|
---|
| 190 | Operators.Add(new GenerationalDistanceAnalyzer());
|
---|
| 191 | Operators.Add(new InvertedGenerationalDistanceAnalyzer());
|
---|
| 192 | Operators.Add(new HypervolumeAnalyzer());
|
---|
| 193 | Operators.Add(new SpacingAnalyzer());
|
---|
[17225] | 194 | Operators.Add(new TimelineAnalyzer());
|
---|
[13421] | 195 | }
|
---|
| 196 | #endregion
|
---|
| 197 | }
|
---|
[17225] | 198 | } |
---|