#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.BinaryVectorEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Optimization.Operators;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.Knapsack {
[Item("Knapsack Problem (KSP)", "Represents a Knapsack problem.")]
[Creatable(CreatableAttribute.Categories.CombinatorialProblems, Priority = 200)]
[StorableClass]
public sealed class KnapsackProblem : SingleObjectiveProblem {
public override bool Maximization { get { return true; } }
#region Parameter Properties
public ValueParameter KnapsackCapacityParameter {
get { return (ValueParameter)Parameters["KnapsackCapacity"]; }
}
public ValueParameter WeightsParameter {
get { return (ValueParameter)Parameters["Weights"]; }
}
public ValueParameter ValuesParameter {
get { return (ValueParameter)Parameters["Values"]; }
}
public OptionalValueParameter BestKnownSolutionParameter {
get { return (OptionalValueParameter)Parameters["BestKnownSolution"]; }
}
#endregion
#region Properties
public int KnapsackCapacity {
get { return KnapsackCapacityParameter.Value.Value; }
set { KnapsackCapacityParameter.Value.Value = value; }
}
public IntArray Weights {
get { return WeightsParameter.Value; }
set { WeightsParameter.Value = value; }
}
public IntArray Values {
get { return ValuesParameter.Value; }
set { ValuesParameter.Value = value; }
}
public BinaryVector BestKnownSolution {
get { return BestKnownSolutionParameter.Value; }
set { BestKnownSolutionParameter.Value = value; }
}
private BestKnapsackSolutionAnalyzer BestKnapsackSolutionAnalyzer {
get { return Operators.OfType().FirstOrDefault(); }
}
#endregion
[StorableConstructor]
private KnapsackProblem(bool deserializing) : base(deserializing) { }
private KnapsackProblem(KnapsackProblem original, Cloner cloner)
: base(original, cloner) {
RegisterEventHandlers();
}
public KnapsackProblem()
: base(new BinaryVectorEncoding("Selection")) {
Parameters.Add(new ValueParameter("KnapsackCapacity", "Capacity of the Knapsack.", new IntValue(1)));
Parameters.Add(new ValueParameter("Weights", "The weights of the items.", new IntArray(5)));
Parameters.Add(new ValueParameter("Values", "The values of the items.", new IntArray(5)));
Parameters.Add(new OptionalValueParameter("BestKnownSolution", "The best known solution of this Knapsack instance."));
InitializeRandomKnapsackInstance();
Encoding.Length = Weights.Length;
InitializeOperators();
RegisterEventHandlers();
}
public override double Evaluate(BinaryVector solution, IRandom random) {
var weights = Weights;
var values = Values;
var totalWeight = 0.0;
var totalValue = 0.0;
for (var i = 0; i < solution.Length; i++) {
if (!solution[i]) continue;
totalWeight += weights[i];
totalValue += values[i];
}
return totalWeight > KnapsackCapacity ? KnapsackCapacity - totalWeight : totalValue;
}
public override IDeepCloneable Clone(Cloner cloner) {
return new KnapsackProblem(this, cloner);
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
RegisterEventHandlers();
}
private void RegisterEventHandlers() {
Evaluator.QualityParameter.ActualNameChanged += Evaluator_QualityParameter_ActualNameChanged;
KnapsackCapacityParameter.ValueChanged += KnapsackCapacityParameter_ValueChanged;
WeightsParameter.ValueChanged += WeightsParameter_ValueChanged;
WeightsParameter.Value.Reset += WeightsValue_Reset;
ValuesParameter.ValueChanged += ValuesParameter_ValueChanged;
ValuesParameter.Value.Reset += ValuesValue_Reset;
// TODO: There is no even to detect if the parameter itself was changed
Encoding.LengthParameter.ValueChanged += Encoding_LengthParameter_ValueChanged;
}
#region Events
protected override void OnEncodingChanged() {
base.OnEncodingChanged();
Parameterize();
}
//TODO check with abeham if this is really necessary
//protected override void OnSolutionCreatorChanged() {
// base.OnSolutionCreatorChanged();
// Parameterize();
//}
protected override void OnEvaluatorChanged() {
base.OnEvaluatorChanged();
Evaluator.QualityParameter.ActualNameChanged += Evaluator_QualityParameter_ActualNameChanged;
Parameterize();
}
private void Evaluator_QualityParameter_ActualNameChanged(object sender, EventArgs e) {
Parameterize();
}
private void KnapsackCapacityParameter_ValueChanged(object sender, EventArgs e) {
Parameterize();
}
private void WeightsParameter_ValueChanged(object sender, EventArgs e) {
Parameterize();
WeightsParameter.Value.Reset += WeightsValue_Reset;
}
private void WeightsValue_Reset(object sender, EventArgs e) {
if (WeightsParameter.Value != null && ValuesParameter.Value != null) {
((IStringConvertibleArray)ValuesParameter.Value).Length = Weights.Length;
Encoding.Length = Weights.Length;
}
Parameterize();
}
private void ValuesParameter_ValueChanged(object sender, EventArgs e) {
Parameterize();
ValuesParameter.Value.Reset += ValuesValue_Reset;
}
private void ValuesValue_Reset(object sender, EventArgs e) {
if (WeightsParameter.Value != null && ValuesParameter.Value != null) {
((IStringConvertibleArray)WeightsParameter.Value).Length = Values.Length;
Encoding.Length = Values.Length;
}
Parameterize();
}
private void Encoding_LengthParameter_ValueChanged(object sender, EventArgs e) {
if (Weights.Length != Encoding.Length) {
((IStringConvertibleArray)WeightsParameter.Value).Length = Encoding.Length;
}
if (Values.Length != Encoding.Length) {
((IStringConvertibleArray)ValuesParameter.Value).Length = Encoding.Length;
}
Parameterize();
}
#endregion
#region Helpers
private void InitializeOperators() {
Operators.Add(new KnapsackImprovementOperator());
Operators.Add(new KnapsackPathRelinker());
Operators.Add(new KnapsackSimultaneousPathRelinker());
Operators.Add(new KnapsackSimilarityCalculator());
Operators.Add(new QualitySimilarityCalculator());
Operators.Add(new NoSimilarityCalculator());
Operators.Add(new BestKnapsackSolutionAnalyzer());
Operators.Add(new PopulationSimilarityAnalyzer(Operators.OfType()));
Parameterize();
}
private void Parameterize() {
var operators = new List();
if (BestKnapsackSolutionAnalyzer != null) {
operators.Add(BestKnapsackSolutionAnalyzer);
BestKnapsackSolutionAnalyzer.MaximizationParameter.ActualName = MaximizationParameter.Name;
BestKnapsackSolutionAnalyzer.MaximizationParameter.Hidden = true;
BestKnapsackSolutionAnalyzer.BestKnownQualityParameter.ActualName = BestKnownQualityParameter.Name;
BestKnapsackSolutionAnalyzer.BestKnownQualityParameter.Hidden = true;
BestKnapsackSolutionAnalyzer.BestKnownSolutionParameter.ActualName = BestKnownSolutionParameter.Name;
BestKnapsackSolutionAnalyzer.BestKnownSolutionParameter.Hidden = true;
BestKnapsackSolutionAnalyzer.KnapsackCapacityParameter.ActualName = KnapsackCapacityParameter.Name;
BestKnapsackSolutionAnalyzer.KnapsackCapacityParameter.Hidden = true;
BestKnapsackSolutionAnalyzer.WeightsParameter.ActualName = WeightsParameter.Name;
BestKnapsackSolutionAnalyzer.WeightsParameter.Hidden = true;
BestKnapsackSolutionAnalyzer.ValuesParameter.ActualName = ValuesParameter.Name;
BestKnapsackSolutionAnalyzer.ValuesParameter.Hidden = true;
}
foreach (var op in Operators.OfType()) {
operators.Add(op);
op.KnapsackCapacityParameter.ActualName = KnapsackCapacityParameter.Name;
op.KnapsackCapacityParameter.Hidden = true;
op.WeightsParameter.ActualName = WeightsParameter.Name;
op.WeightsParameter.Hidden = true;
op.ValuesParameter.ActualName = ValuesParameter.Name;
op.ValuesParameter.Hidden = true;
var bitflipMoveEval = op as IKnapsackOneBitflipMoveEvaluator;
if (bitflipMoveEval != null) {
foreach (var moveOp in Encoding.Operators.OfType()) {
moveOp.MoveQualityParameter.ActualName = bitflipMoveEval.MoveQualityParameter.ActualName;
moveOp.MoveQualityParameter.Hidden = true;
}
}
}
foreach (var op in Operators.OfType()) {
operators.Add(op);
op.SolutionParameter.ActualName = Encoding.Name;
op.SolutionParameter.Hidden = true;
}
foreach (var op in Operators.OfType()) {
operators.Add(op);
op.ParentsParameter.ActualName = Encoding.Name;
op.ParentsParameter.Hidden = true;
}
foreach (var op in Operators.OfType()) {
operators.Add(op);
op.SolutionVariableName = Encoding.Name;
op.QualityVariableName = Evaluator.QualityParameter.ActualName;
}
if (operators.Count > 0) Encoding.ConfigureOperators(Operators);
}
#endregion
private void InitializeRandomKnapsackInstance() {
var sysrand = new System.Random();
var power = sysrand.Next(5, 11);
var itemCount = (int)Math.Pow(2, power);
Weights = new IntArray(itemCount);
Values = new IntArray(itemCount);
double totalWeight = 0;
for (int i = 0; i < itemCount; i++) {
var value = sysrand.Next(1, 30);
var weight = sysrand.Next(1, 30);
Values[i] = value;
Weights[i] = weight;
totalWeight += weight;
}
KnapsackCapacity = (int)Math.Round(0.5 * totalWeight);
}
}
}