using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class Feynman85 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public Feynman85() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public Feynman85(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public Feynman85(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format("II.38.14 Y/(2*(1+sigma)) | {0}", noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); } } protected override string TargetVariable { get { return noiseRatio == null ? "mu_S" : "mu_S_noise"; } } protected override string[] VariableNames { get { return noiseRatio == null ? new[] { "Y", "sigma", "mu_S" } : new[] { "Y", "sigma", "mu_S", "mu_S_noise" }; } } protected override string[] AllowedInputVariables { get { return new[] {"Y", "sigma"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var Y = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var sigma = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); var mu_S = new List(); data.Add(Y); data.Add(sigma); data.Add(mu_S); for (var i = 0; i < Y.Count; i++) { var res = Y[i] / (2 * (1 + sigma[i])); mu_S.Add(res); } var targetNoise = ValueGenerator.GenerateNoise(mu_S, rand, noiseRatio); if (targetNoise != null) data.Add(targetNoise); return data; } } }