using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Random; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class Feynman57 : FeynmanDescriptor { private readonly int testSamples; private readonly int trainingSamples; public Feynman57() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { } public Feynman57(int seed) { Seed = seed; trainingSamples = 10000; testSamples = 10000; noiseRatio = null; } public Feynman57(int seed, int trainingSamples, int testSamples, double? noiseRatio) { Seed = seed; this.trainingSamples = trainingSamples; this.testSamples = testSamples; this.noiseRatio = noiseRatio; } public override string Name { get { return string.Format( "II.6.15b 3/(4*pi*epsilon)*p_d/r**3*cos(theta)*sin(theta) | {0}", noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); } } protected override string TargetVariable { get { return noiseRatio == null ? "Ef" : "Ef_noise"; } } protected override string[] VariableNames { get { return noiseRatio == null ? new[] { "epsilon", "p_d", "theta", "r", "Ef" } : new[] { "epsilon", "p_d", "theta", "r", "Ef", "Ef_noise" }; } } protected override string[] AllowedInputVariables { get { return new[] {"epsilon", "p_d", "theta", "r"}; } } public int Seed { get; private set; } protected override int TrainingPartitionStart { get { return 0; } } protected override int TrainingPartitionEnd { get { return trainingSamples; } } protected override int TestPartitionStart { get { return trainingSamples; } } protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } } protected override List> GenerateValues() { var rand = new MersenneTwister((uint) Seed); var data = new List>(); var epsilon = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var p_d = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var theta = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var r = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); var Ef = new List(); data.Add(epsilon); data.Add(p_d); data.Add(theta); data.Add(r); data.Add(Ef); for (var i = 0; i < epsilon.Count; i++) { var res = 3.0 / (4 * Math.PI * epsilon[i]) * p_d[i] / Math.Pow(r[i], 3) * Math.Cos(theta[i]) * Math.Sin(theta[i]); Ef.Add(res); } var targetNoise = ValueGenerator.GenerateNoise(Ef, rand, noiseRatio); if (targetNoise != null) data.Add(targetNoise); return data; } } }