#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
public static class LinearModelToTreeConverter {
public static ISymbolicExpressionTree CreateTree(string[] variableNames, double[] coefficients,
double @const = 0) {
return CreateTree(variableNames, new int[variableNames.Length], coefficients, @const);
}
public static ISymbolicExpressionTree CreateTree(
IEnumerable>> factors, double[] factorCoefficients,
string[] variableNames, double[] coefficients,
double @const = 0) {
if (factorCoefficients.Length == 0 && coefficients.Length == 0) throw new ArgumentException();
// Create tree for double variables
ISymbolicExpressionTree tree = null;
if (coefficients.Length > 0) {
tree = CreateTree(variableNames, new int[variableNames.Length], coefficients, @const);
if (factorCoefficients.Length == 0) return tree;
}
// Create tree for string variables
ISymbolicExpressionTree factorTree = null;
if (factorCoefficients.Length > 0) {
factorTree = CreateTree(factors, factorCoefficients, @const);
if (tree == null) return factorTree;
}
// Combine both trees
ISymbolicExpressionTreeNode add = tree.Root.GetSubtree(0).GetSubtree(0);
foreach (var binFactorNode in factorTree.IterateNodesPrefix().OfType())
add.InsertSubtree(add.SubtreeCount - 1, binFactorNode);
return tree;
throw new ArgumentException();
}
public static ISymbolicExpressionTree CreateTree(string[] variableNames, int[] lags, double[] coefficients,
double @const = 0) {
if (variableNames.Length == 0 ||
variableNames.Length != coefficients.Length ||
variableNames.Length != lags.Length)
throw new ArgumentException("The length of the variable names, lags, and coefficients vectors must match");
ISymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode());
ISymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode();
tree.Root.AddSubtree(startNode);
ISymbolicExpressionTreeNode addition = new Addition().CreateTreeNode();
startNode.AddSubtree(addition);
for (int i = 0; i < variableNames.Length; i++) {
if (lags[i] == 0) {
VariableTreeNode vNode = (VariableTreeNode)new Variable().CreateTreeNode();
vNode.VariableName = variableNames[i];
vNode.Weight = coefficients[i];
addition.AddSubtree(vNode);
} else {
LaggedVariableTreeNode vNode = (LaggedVariableTreeNode)new LaggedVariable().CreateTreeNode();
vNode.VariableName = variableNames[i];
vNode.Weight = coefficients[i];
vNode.Lag = lags[i];
addition.AddSubtree(vNode);
}
}
if (!@const.IsAlmost(0.0)) {
ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode();
cNode.Value = @const;
addition.AddSubtree(cNode);
}
return tree;
}
public static ISymbolicExpressionTree CreateTree(IEnumerable>> factors,
double[] factorCoefficients,
double @const = 0) {
ISymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode());
ISymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode();
tree.Root.AddSubtree(startNode);
ISymbolicExpressionTreeNode addition = new Addition().CreateTreeNode();
startNode.AddSubtree(addition);
int i = 0;
foreach (var factor in factors) {
var varName = factor.Key;
foreach (var factorValue in factor.Value) {
var node = (BinaryFactorVariableTreeNode)new BinaryFactorVariable().CreateTreeNode();
node.VariableValue = factorValue;
node.VariableName = varName;
node.Weight = factorCoefficients[i];
addition.AddSubtree(node);
i++;
}
}
if (!@const.IsAlmost(0.0)) {
ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode();
cNode.Value = @const;
addition.AddSubtree(cNode);
}
return tree;
}
}
}