#region License Information
/* HeuristicLab
* Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using HEAL.Attic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Parameters;
namespace HeuristicLab.Optimization {
[StorableType("2697320D-0259-44BB-BD71-7EE1B10F664C")]
public abstract class SingleObjectiveProblem :
Problem>,
ISingleObjectiveProblem,
ISingleObjectiveProblemDefinition
where TEncoding : class, IEncoding
where TEncodedSolution : class, IEncodedSolution {
[Storable] protected IValueParameter BestKnownQualityParameter { get; private set; }
[Storable] protected IValueParameter MaximizationParameter { get; private set; }
public double BestKnownQuality {
get {
if (BestKnownQualityParameter.Value == null) return double.NaN;
return BestKnownQualityParameter.Value.Value;
}
set {
if (double.IsNaN(value)) {
BestKnownQualityParameter.Value = null;
return;
}
if (BestKnownQualityParameter.Value == null) BestKnownQualityParameter.Value = new DoubleValue(value);
else BestKnownQualityParameter.Value.Value = value;
}
}
public bool Maximization {
get { return MaximizationParameter.Value.Value; }
protected set {
if (Maximization == value) return;
MaximizationParameter.Value = new BoolValue(value, @readonly: true);
}
}
[StorableConstructor]
protected SingleObjectiveProblem(StorableConstructorFlag _) : base(_) { }
protected SingleObjectiveProblem(SingleObjectiveProblem original, Cloner cloner)
: base(original, cloner) {
BestKnownQualityParameter = cloner.Clone(original.BestKnownQualityParameter);
MaximizationParameter = cloner.Clone(original.MaximizationParameter);
Parameterize();
RegisterEventHandlers();
}
protected SingleObjectiveProblem() : base() {
MaximizationParameter = new ValueParameter("Maximization", "Whether the problem should be maximized (True) or minimized (False).", new BoolValue(false).AsReadOnly()) { Hidden = true, ReadOnly = true };
BestKnownQualityParameter = new OptionalValueParameter("BestKnownQuality", "The quality of the best known solution of this problem.");
Parameters.Add(MaximizationParameter);
Parameters.Add(BestKnownQualityParameter);
Operators.Add(Evaluator);
Operators.Add(new SingleObjectiveAnalyzer());
Operators.Add(new SingleObjectiveImprover());
Operators.Add(new SingleObjectiveMoveEvaluator());
Operators.Add(new SingleObjectiveMoveGenerator());
Operators.Add(new SingleObjectiveMoveMaker());
Parameterize();
RegisterEventHandlers();
}
protected SingleObjectiveProblem(TEncoding encoding) : base(encoding) {
Parameters.Add(MaximizationParameter = new ValueParameter("Maximization", "Set to false if the problem should be minimized.", new BoolValue(false).AsReadOnly()) { Hidden = true, ReadOnly = true });
Parameters.Add(BestKnownQualityParameter = new OptionalValueParameter("BestKnownQuality", "The quality of the best known solution of this problem."));
Operators.Add(Evaluator);
Operators.Add(new SingleObjectiveAnalyzer());
Operators.Add(new SingleObjectiveImprover());
Operators.Add(new SingleObjectiveMoveEvaluator());
Operators.Add(new SingleObjectiveMoveGenerator());
Operators.Add(new SingleObjectiveMoveMaker());
Parameterize();
RegisterEventHandlers();
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
Parameterize();
RegisterEventHandlers();
}
public ISingleObjectiveEvaluationResult Evaluate(TEncodedSolution solution, IRandom random) {
return Evaluate(solution, random, CancellationToken.None);
}
public abstract ISingleObjectiveEvaluationResult Evaluate(TEncodedSolution solution, IRandom random, CancellationToken cancellationToken);
public void Evaluate(ISingleObjectiveSolutionContext solutionContext, IRandom random) {
Evaluate(solutionContext, random, CancellationToken.None);
}
public virtual void Evaluate(ISingleObjectiveSolutionContext solutionContext, IRandom random, CancellationToken cancellationToken) {
var evaluationResult = Evaluate(solutionContext.EncodedSolution, random, cancellationToken);
solutionContext.EvaluationResult = evaluationResult;
}
public virtual void Analyze(TEncodedSolution[] solutions, double[] qualities, ResultCollection results, IRandom random) { }
public virtual void Analyze(ISingleObjectiveSolutionContext[] solutionContexts, ResultCollection results, IRandom random) {
var solutions = solutionContexts.Select(c => c.EncodedSolution).ToArray();
var qualities = solutionContexts.Select(c => c.EvaluationResult.Quality).ToArray();
Analyze(solutions, qualities, results, random);
}
public virtual IEnumerable GetNeighbors(TEncodedSolution solutions, IRandom random) {
return Enumerable.Empty();
}
public virtual IEnumerable> GetNeighbors(ISingleObjectiveSolutionContext solutionContext, IRandom random) {
return GetNeighbors(solutionContext.EncodedSolution, random).Select(n => new SingleObjectiveSolutionContext(n));
}
public static bool IsBetter(bool maximization, double quality, double bestQuality) {
return (maximization && quality > bestQuality || !maximization && quality < bestQuality);
}
public virtual bool IsBetter(double quality, double bestQuality) {
return IsBetter(Maximization, quality, bestQuality);
}
//TODO refactor to solution contexts
protected ISingleObjectiveSolutionContext GetBest(ISingleObjectiveSolutionContext[] solutionContexts) {
return Maximization ? solutionContexts.MaxItems(x => x.EvaluationResult.Quality).First()
: solutionContexts.MinItems(x => x.EvaluationResult.Quality).First();
}
protected Tuple GetBestSolution(TEncodedSolution[] solutions, double[] qualities) {
return GetBestSolution(solutions, qualities, Maximization);
}
public static Tuple GetBestSolution(TEncodedSolution[] solutions, double[] qualities, bool maximization) {
var zipped = solutions.Zip(qualities, (s, q) => new { Solution = s, Quality = q });
var best = (maximization ? zipped.OrderByDescending(z => z.Quality) : zipped.OrderBy(z => z.Quality)).First();
return Tuple.Create(best.Solution, best.Quality);
}
protected override void OnOperatorsChanged() {
if (Encoding != null) {
PruneMultiObjectiveOperators(Encoding);
var combinedEncoding = Encoding as CombinedEncoding;
if (combinedEncoding != null) {
foreach (var encoding in combinedEncoding.Encodings.ToList()) {
PruneMultiObjectiveOperators(encoding);
}
}
}
base.OnOperatorsChanged();
}
private void PruneMultiObjectiveOperators(IEncoding encoding) {
if (encoding.Operators.Any(x => x is IMultiObjectiveOperator && !(x is ISingleObjectiveOperator)))
encoding.Operators = encoding.Operators.Where(x => !(x is IMultiObjectiveOperator) || x is ISingleObjectiveOperator).ToList();
foreach (var multiOp in Encoding.Operators.OfType()) {
foreach (var moOp in multiOp.Operators.Where(x => x is IMultiObjectiveOperator).ToList()) {
multiOp.RemoveOperator(moOp);
}
}
}
protected override void OnEvaluatorChanged() {
base.OnEvaluatorChanged();
Evaluator.QualityParameter.ActualNameChanged += QualityParameterOnActualNameChanged;
}
protected virtual void QualityParameterOnActualNameChanged(object sender, EventArgs e) {
ParameterizeOperators();
}
protected override void ParameterizeOperators() {
base.ParameterizeOperators();
Parameterize();
}
private void Parameterize() {
foreach (var op in Operators.OfType>())
op.Evaluate = Evaluate;
foreach (var op in Operators.OfType>())
op.Analyze = Analyze;
foreach (var op in Operators.OfType>())
op.GetNeighbors = GetNeighbors;
foreach (var op in Operators.OfType()) {
op.SolutionVariableName = Encoding.Name;
op.QualityVariableName = Evaluator.QualityParameter.ActualName;
}
}
private void RegisterEventHandlers() {
BoolValueParameterChangeHandler.Create(MaximizationParameter, OnMaximizationChanged);
}
#region ISingleObjectiveHeuristicOptimizationProblem Members
IParameter ISingleObjectiveHeuristicOptimizationProblem.MaximizationParameter {
get { return Parameters["Maximization"]; }
}
IParameter ISingleObjectiveHeuristicOptimizationProblem.BestKnownQualityParameter {
get { return Parameters["BestKnownQuality"]; }
}
ISingleObjectiveEvaluator ISingleObjectiveHeuristicOptimizationProblem.Evaluator {
get { return Evaluator; }
}
#endregion
public event EventHandler MaximizationChanged;
protected void OnMaximizationChanged() {
MaximizationChanged?.Invoke(this, EventArgs.Empty);
}
}
}