#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * and the BEACON Center for the Study of Evolution in Action. * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using HEAL.Attic; using HeuristicLab.Common; using HeuristicLab.Encodings.RealVectorEncoding; using HeuristicLab.Random; namespace HeuristicLab.Algorithms.MOCMAEvolutionStrategy { [StorableType("8D5AF328-84A0-4924-9909-A113CDCFC117")] public class Individual : IDeepCloneable { #region Properties [Storable] private MOCMAEvolutionStrategy strategy; //Chromosome [Storable] public RealVector Mean { get; private set; } [Storable] private double sigma;//stepsize [Storable] private RealVector evolutionPath; // pc [Storable] private RealVector lastStep; [Storable] private RealVector lastZ; [Storable] private double[,] lowerCholesky; //Phenotype [Storable] public double[] Fitness { get; set; } [Storable] public double[] PenalizedFitness { get; set; } [Storable] public bool Selected { get; set; } [Storable] public double SuccessProbability { get; set; } #endregion #region Constructors and Cloning [StorableConstructor] protected Individual(StorableConstructorFlag _) { } public Individual(RealVector mean, double pSucc, double sigma, RealVector pc, double[,] c, MOCMAEvolutionStrategy strategy) { Mean = mean; lastStep = new RealVector(mean.Length); SuccessProbability = pSucc; this.sigma = sigma; evolutionPath = pc; CholeskyDecomposition(c); Selected = true; this.strategy = strategy; } public Individual(Individual other) { SuccessProbability = other.SuccessProbability; sigma = other.sigma; evolutionPath = (RealVector)other.evolutionPath.Clone(); Mean = (RealVector)other.Mean.Clone(); lowerCholesky = (double[,])other.lowerCholesky.Clone(); Selected = true; strategy = other.strategy; } public Individual(Individual other, Cloner cloner) { strategy = cloner.Clone(other.strategy); Mean = cloner.Clone(other.Mean); sigma = other.sigma; evolutionPath = cloner.Clone(other.evolutionPath); lastStep = cloner.Clone(other.evolutionPath); lastZ = cloner.Clone(other.lastZ); lowerCholesky = other.lowerCholesky != null ? other.lowerCholesky.Clone() as double[,] : null; Fitness = other.Fitness != null ? other.Fitness.Select(x => x).ToArray() : null; PenalizedFitness = other.PenalizedFitness != null ? other.PenalizedFitness.Select(x => x).ToArray() : null; Selected = other.Selected; SuccessProbability = other.SuccessProbability; } public object Clone() { return new Cloner().Clone(this); } public IDeepCloneable Clone(Cloner cloner) { return new Individual(this, cloner); } #endregion public void Mutate(NormalDistributedRandom gauss) { //sampling a random z from N(0,I) where I is the Identity matrix; lastZ = new RealVector(Mean.Length); var n = lastZ.Length; for (var i = 0; i < n; i++) lastZ[i] = gauss.NextDouble(); //Matrixmultiplication: lastStep = lowerCholesky * lastZ; lastStep = new RealVector(Mean.Length); for (var i = 0; i < n; i++) { double sum = 0; for (var j = 0; j <= i; j++) sum += lowerCholesky[i, j] * lastZ[j]; lastStep[i] = sum; } //add the step to x weighted by stepsize; for (var i = 0; i < Mean.Length; i++) Mean[i] += sigma * lastStep[i]; } public void UpdateAsParent(bool offspringSuccessful) { SuccessProbability = (1 - strategy.StepSizeLearningRate) * SuccessProbability + strategy.StepSizeLearningRate * (offspringSuccessful ? 1 : 0); sigma *= Math.Exp(1 / strategy.StepSizeDampeningFactor * (SuccessProbability - strategy.TargetSuccessProbability) / (1 - strategy.TargetSuccessProbability)); if (!offspringSuccessful) return; if (SuccessProbability < strategy.SuccessThreshold && lastZ != null) { var stepNormSqr = lastZ.Sum(d => d * d); var rate = strategy.CovarianceMatrixUnlearningRate; if (stepNormSqr > 1 && 1 < strategy.CovarianceMatrixUnlearningRate * (2 * stepNormSqr - 1)) rate = 1 / (2 * stepNormSqr - 1); CholeskyUpdate(lastStep, 1 + rate, -rate); } else RoundUpdate(); } public void UpdateAsOffspring() { SuccessProbability = (1 - strategy.StepSizeLearningRate) * SuccessProbability + strategy.StepSizeLearningRate; sigma *= Math.Exp(1 / strategy.StepSizeDampeningFactor * (SuccessProbability - strategy.TargetSuccessProbability) / (1 - strategy.TargetSuccessProbability)); var evolutionpathUpdateWeight = strategy.EvolutionPathLearningRate * (2.0 - strategy.EvolutionPathLearningRate); if (SuccessProbability < strategy.SuccessThreshold) { UpdateEvolutionPath(1 - strategy.EvolutionPathLearningRate, evolutionpathUpdateWeight); CholeskyUpdate(evolutionPath, 1 - strategy.CovarianceMatrixLearningRate, strategy.CovarianceMatrixLearningRate); } else RoundUpdate(); } public void UpdateEvolutionPath(double learningRate, double updateWeight) { updateWeight = Math.Sqrt(updateWeight); for (var i = 0; i < evolutionPath.Length; i++) { evolutionPath[i] *= learningRate; evolutionPath[i] += updateWeight * lastStep[i]; } } #region Helpers private void CholeskyDecomposition(double[,] c) { if (!alglib.spdmatrixcholesky(ref c, c.GetLength(0), false)) throw new ArgumentException("Covariancematrix is not symmetric positiv definit"); lowerCholesky = (double[,])c.Clone(); } private void CholeskyUpdate(RealVector v, double alpha, double beta) { var n = v.Length; var temp = new double[n]; for (var i = 0; i < n; i++) temp[i] = v[i]; double betaPrime = 1; var a = Math.Sqrt(alpha); for (var j = 0; j < n; j++) { var ljj = a * lowerCholesky[j, j]; var dj = ljj * ljj; var wj = temp[j]; var swj2 = beta * wj * wj; var gamma = dj * betaPrime + swj2; var x1 = dj + swj2 / betaPrime; if (x1 < 0.0) return; var nLjj = Math.Sqrt(x1); lowerCholesky[j, j] = nLjj; betaPrime += swj2 / dj; if (j + 1 >= n) continue; for (var i = j + 1; i < n; i++) lowerCholesky[i, j] *= a; for (var i = j + 1; i < n; i++) temp[i] = wj / ljj * lowerCholesky[i, j]; if (gamma.IsAlmost(0)) continue; for (var i = j + 1; i < n; i++) lowerCholesky[i, j] *= nLjj / ljj; for (var i = j + 1; i < n; i++) lowerCholesky[i, j] += nLjj * beta * wj / gamma * temp[i]; } } private void RoundUpdate() { var evolutionPathUpdateWeight = strategy.EvolutionPathLearningRate * (2.0 - strategy.EvolutionPathLearningRate); UpdateEvolutionPath(1 - strategy.EvolutionPathLearningRate, 0); CholeskyUpdate(evolutionPath, 1 - strategy.CovarianceMatrixLearningRate + evolutionPathUpdateWeight, strategy.CovarianceMatrixLearningRate); } #endregion } }