1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Globalization;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 | using HeuristicLab.Random;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
32 | public abstract class VariableNetwork : ArtificialRegressionDataDescriptor {
|
---|
33 | private int nTrainingSamples;
|
---|
34 | private int nTestSamples;
|
---|
35 |
|
---|
36 | private int numberOfFeatures;
|
---|
37 | private double noiseRatio;
|
---|
38 | private IRandom random;
|
---|
39 |
|
---|
40 | private string networkDefinition;
|
---|
41 | public string NetworkDefinition { get { return networkDefinition; } }
|
---|
42 | public override string Description {
|
---|
43 | get {
|
---|
44 | return "The data are generated specifically to test methods for variable network analysis.";
|
---|
45 | }
|
---|
46 | }
|
---|
47 |
|
---|
48 | protected VariableNetwork(int nTrainingSamples, int nTestSamples,
|
---|
49 | int numberOfFeatures, double noiseRatio, IRandom rand) {
|
---|
50 | this.nTrainingSamples = nTrainingSamples;
|
---|
51 | this.nTestSamples = nTestSamples;
|
---|
52 | this.noiseRatio = noiseRatio;
|
---|
53 | this.random = rand;
|
---|
54 | this.numberOfFeatures = numberOfFeatures;
|
---|
55 | // default variable names
|
---|
56 | variableNames = Enumerable.Range(1, numberOfFeatures)
|
---|
57 | .Select(i => string.Format("X{0:000}", i))
|
---|
58 | .ToArray();
|
---|
59 |
|
---|
60 | variableRelevances = new Dictionary<string, IEnumerable<KeyValuePair<string, double>>>();
|
---|
61 | }
|
---|
62 |
|
---|
63 | private string[] variableNames;
|
---|
64 | protected override string[] VariableNames {
|
---|
65 | get {
|
---|
66 | return variableNames;
|
---|
67 | }
|
---|
68 | }
|
---|
69 |
|
---|
70 | // there is no specific target variable in variable network analysis but we still need to specify one
|
---|
71 | protected override string TargetVariable { get { return VariableNames.Last(); } }
|
---|
72 |
|
---|
73 | protected override string[] AllowedInputVariables {
|
---|
74 | get {
|
---|
75 | return VariableNames.Take(numberOfFeatures - 1).ToArray();
|
---|
76 | }
|
---|
77 | }
|
---|
78 |
|
---|
79 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
80 | protected override int TrainingPartitionEnd { get { return nTrainingSamples; } }
|
---|
81 | protected override int TestPartitionStart { get { return nTrainingSamples; } }
|
---|
82 | protected override int TestPartitionEnd { get { return nTrainingSamples + nTestSamples; } }
|
---|
83 |
|
---|
84 | private Dictionary<string, IEnumerable<KeyValuePair<string, double>>> variableRelevances;
|
---|
85 | public IEnumerable<KeyValuePair<string, double>> GetVariableRelevance(string targetVar) {
|
---|
86 | return variableRelevances[targetVar];
|
---|
87 | }
|
---|
88 |
|
---|
89 | protected override List<List<double>> GenerateValues() {
|
---|
90 | // variable names are shuffled in the beginning (and sorted at the end)
|
---|
91 | variableNames = variableNames.Shuffle(random).ToArray();
|
---|
92 |
|
---|
93 | // a third of all variables are independent vars
|
---|
94 | List<List<double>> lvl0 = new List<List<double>>();
|
---|
95 | int numLvl0 = (int)Math.Ceiling(numberOfFeatures * 0.33);
|
---|
96 |
|
---|
97 | List<string> description = new List<string>(); // store information how the variable is actually produced
|
---|
98 | List<string[]> inputVarNames = new List<string[]>(); // store information to produce graphviz file
|
---|
99 | List<double[]> relevances = new List<double[]>(); // stores variable relevance information (same order as given in inputVarNames)
|
---|
100 |
|
---|
101 | var nrand = new NormalDistributedRandom(random, 0, 1);
|
---|
102 | for(int c = 0; c < numLvl0; c++) {
|
---|
103 | inputVarNames.Add(new string[] { });
|
---|
104 | relevances.Add(new double[] { });
|
---|
105 | description.Add(" ~ N(0, 1 + noiseLvl)");
|
---|
106 | // use same generation procedure for all variables
|
---|
107 | var x = Enumerable.Range(0, TestPartitionEnd).Select(_ => nrand.NextDouble()).ToList();
|
---|
108 | var sigma = x.StandardDeviationPop();
|
---|
109 | var mean = x.Average();
|
---|
110 | for(int i = 0; i < x.Count; i++) x[i] = (x[i] - mean) / sigma;
|
---|
111 | var noisePrng = new NormalDistributedRandom(random, 0, Math.Sqrt(noiseRatio / (1.0 - noiseRatio)));
|
---|
112 | lvl0.Add(x.Select(t => t + noisePrng.NextDouble()).ToList());
|
---|
113 | }
|
---|
114 |
|
---|
115 | // lvl1 contains variables which are functions of vars in lvl0 (+ noise)
|
---|
116 | int numLvl1 = (int)Math.Ceiling(numberOfFeatures * 0.33);
|
---|
117 | List<List<double>> lvl1 = CreateVariables(lvl0, numLvl1, inputVarNames, description, relevances);
|
---|
118 |
|
---|
119 | // lvl2 contains variables which are functions of vars in lvl0 and lvl1 (+ noise)
|
---|
120 | int numLvl2 = (int)Math.Ceiling(numberOfFeatures * 0.2);
|
---|
121 | List<List<double>> lvl2 = CreateVariables(lvl0.Concat(lvl1).ToList(), numLvl2, inputVarNames, description, relevances);
|
---|
122 |
|
---|
123 | // lvl3 contains variables which are functions of vars in lvl0, lvl1 and lvl2 (+ noise)
|
---|
124 | int numLvl3 = numberOfFeatures - numLvl0 - numLvl1 - numLvl2;
|
---|
125 | List<List<double>> lvl3 = CreateVariables(lvl0.Concat(lvl1).Concat(lvl2).ToList(), numLvl3, inputVarNames, description, relevances);
|
---|
126 |
|
---|
127 | this.variableRelevances.Clear();
|
---|
128 | for(int i = 0; i < variableNames.Length; i++) {
|
---|
129 | var targetVarName = variableNames[i];
|
---|
130 | var targetRelevantInputs =
|
---|
131 | inputVarNames[i].Zip(relevances[i], (inputVar, rel) => new KeyValuePair<string, double>(inputVar, rel))
|
---|
132 | .ToArray();
|
---|
133 | variableRelevances.Add(targetVarName, targetRelevantInputs);
|
---|
134 | }
|
---|
135 |
|
---|
136 | networkDefinition = string.Join(Environment.NewLine, variableNames.Zip(description, (n, d) => n + d).OrderBy(x => x));
|
---|
137 | // for graphviz
|
---|
138 | networkDefinition += Environment.NewLine + "digraph G {";
|
---|
139 | for(int i = 0; i < variableNames.Length; i++) {
|
---|
140 | var name = variableNames[i];
|
---|
141 | var selectedVarNames = inputVarNames[i];
|
---|
142 | var selectedRelevances = relevances[i];
|
---|
143 | for(int j = 0; j < selectedVarNames.Length; j++) {
|
---|
144 | var selectedVarName = selectedVarNames[j];
|
---|
145 | var selectedRelevance = selectedRelevances[j];
|
---|
146 | networkDefinition += Environment.NewLine + selectedVarName + " -> " + name +
|
---|
147 | string.Format(CultureInfo.InvariantCulture, " [label={0:N3}]", selectedRelevance);
|
---|
148 | }
|
---|
149 | }
|
---|
150 | networkDefinition += Environment.NewLine + "}";
|
---|
151 |
|
---|
152 | // return a random permutation of all variables (to mix lvl0, lvl1, ... variables)
|
---|
153 | var allVars = lvl0.Concat(lvl1).Concat(lvl2).Concat(lvl3).ToList();
|
---|
154 | var orderedVars = allVars.Zip(variableNames, Tuple.Create).OrderBy(t => t.Item2).Select(t => t.Item1).ToList();
|
---|
155 | variableNames = variableNames.OrderBy(n => n).ToArray();
|
---|
156 | return orderedVars;
|
---|
157 | }
|
---|
158 |
|
---|
159 | private List<List<double>> CreateVariables(List<List<double>> allowedInputs, int numVars, List<string[]> inputVarNames, List<string> description, List<double[]> relevances) {
|
---|
160 | var newVariables = new List<List<double>>();
|
---|
161 | for(int c = 0; c < numVars; c++) {
|
---|
162 | string[] selectedVarNames;
|
---|
163 | double[] relevance;
|
---|
164 | var x = GenerateRandomFunction(random, allowedInputs, out selectedVarNames, out relevance).ToArray();
|
---|
165 | // standardize x
|
---|
166 | var sigma = x.StandardDeviation();
|
---|
167 | var mean = x.Average();
|
---|
168 | for(int i = 0; i < x.Length; i++) x[i] = (x[i] - mean) / sigma;
|
---|
169 |
|
---|
170 | var noisePrng = new NormalDistributedRandom(random, 0, Math.Sqrt(noiseRatio / (1.0 - noiseRatio)));
|
---|
171 | newVariables.Add(x.Select(t => t + noisePrng.NextDouble()).ToList());
|
---|
172 | Array.Sort(selectedVarNames, relevance);
|
---|
173 | inputVarNames.Add(selectedVarNames);
|
---|
174 | relevances.Add(relevance);
|
---|
175 | var desc = string.Format("f({0})", string.Join(",", selectedVarNames));
|
---|
176 | // for the relevance information order variables by decreasing relevance
|
---|
177 | var relevanceStr = string.Join(", ",
|
---|
178 | selectedVarNames.Zip(relevance, Tuple.Create)
|
---|
179 | .OrderByDescending(t => t.Item2)
|
---|
180 | .Select(t => string.Format(CultureInfo.InvariantCulture, "{0}: {1:N3}", t.Item1, t.Item2)));
|
---|
181 | description.Add(string.Format(" ~ N({0}, {1:N3}) [Relevances: {2}]", desc, noisePrng.Sigma, relevanceStr));
|
---|
182 | }
|
---|
183 | return newVariables;
|
---|
184 | }
|
---|
185 |
|
---|
186 | public int SampleNumberOfVariables(IRandom rand, int maxNumberOfVariables) {
|
---|
187 | double r = -Math.Log(1.0 - rand.NextDouble()) * 2.0; // r is exponentially distributed with lambda = 2
|
---|
188 | int nl = (int)Math.Floor(1.5 + r); // number of selected vars is likely to be between three and four
|
---|
189 | return Math.Min(maxNumberOfVariables, nl);
|
---|
190 | }
|
---|
191 |
|
---|
192 | // sample a random function and calculate the variable relevances
|
---|
193 | protected abstract IEnumerable<double> GenerateRandomFunction(IRandom rand, List<List<double>> xs, out string[] selectedVarNames, out double[] relevance);
|
---|
194 | }
|
---|
195 | }
|
---|