#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections; using System.Collections.Generic; using System.IO; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.Problems.Instances.DataAnalysis { public class ClassificationCSVInstanceProvider : ClassificationInstanceProvider { public override string Name { get { return "CSV File"; } } public override string Description { get { return ""; } } public override Uri WebLink { get { return new Uri("http://dev.heuristiclab.com/trac.fcgi/wiki/Documentation/FAQ#DataAnalysisImportFileFormat"); } } public override string ReferencePublication { get { return ""; } } public override IEnumerable GetDataDescriptors() { return new List(); } public override IClassificationProblemData LoadData(IDataDescriptor descriptor) { throw new NotImplementedException(); } public override bool CanImportData { get { return true; } } public override IClassificationProblemData ImportData(string path) { TableFileParser csvFileParser = new TableFileParser(); csvFileParser.Parse(path, csvFileParser.AreColumnNamesInFirstLine(path)); Dataset dataset = new Dataset(csvFileParser.VariableNames, csvFileParser.Values); string targetVar = dataset.DoubleVariables.Last(); // turn of input variables that are constant in the training partition var allowedInputVars = new List(); var trainingIndizes = Enumerable.Range(0, (csvFileParser.Rows * 2) / 3); if (trainingIndizes.Count() >= 2) { foreach (var variableName in dataset.DoubleVariables) { if (dataset.GetDoubleValues(variableName, trainingIndizes).Range() > 0 && variableName != targetVar) allowedInputVars.Add(variableName); } } else { allowedInputVars.AddRange(dataset.DoubleVariables.Where(x => !x.Equals(targetVar))); } ClassificationProblemData classificationData = new ClassificationProblemData(dataset, allowedInputVars, targetVar); int trainingPartEnd = trainingIndizes.Last(); classificationData.TrainingPartition.Start = trainingIndizes.First(); classificationData.TrainingPartition.End = trainingPartEnd; classificationData.TestPartition.Start = trainingPartEnd; classificationData.TestPartition.End = csvFileParser.Rows; classificationData.Name = Path.GetFileName(path); return classificationData; } protected override IClassificationProblemData ImportData(string path, ClassificationImportType type, TableFileParser csvFileParser) { int trainingPartEnd = (csvFileParser.Rows * type.TrainingPercentage) / 100; List values = csvFileParser.Values; if (type.Shuffle) { values = Shuffle(values); if (type.UniformlyDistributeClasses) { values = Shuffle(values, csvFileParser.VariableNames.ToList().FindIndex(x => x.Equals(type.TargetVariable)), type.TrainingPercentage, out trainingPartEnd); } } Dataset dataset = new Dataset(csvFileParser.VariableNames, values); // turn of input variables that are constant in the training partition var allowedInputVars = new List(); var trainingIndizes = Enumerable.Range(0, trainingPartEnd); if (trainingIndizes.Count() >= 2) { foreach (var variableName in dataset.DoubleVariables) { if (dataset.GetDoubleValues(variableName, trainingIndizes).Range() > 0 && variableName != type.TargetVariable) allowedInputVars.Add(variableName); } } else { allowedInputVars.AddRange(dataset.DoubleVariables.Where(x => !x.Equals(type.TargetVariable))); } ClassificationProblemData classificationData = new ClassificationProblemData(dataset, allowedInputVars, type.TargetVariable); classificationData.TrainingPartition.Start = 0; classificationData.TrainingPartition.End = trainingPartEnd; classificationData.TestPartition.Start = trainingPartEnd; classificationData.TestPartition.End = csvFileParser.Rows; classificationData.Name = Path.GetFileName(path); return classificationData; } protected List Shuffle(List values, int target, int trainingPercentage, out int trainingPartEnd) { IList targetValues = values[target]; var group = targetValues.Cast().GroupBy(x => x).Select(g => new { Key = g.Key, Count = g.Count() }).ToList(); Dictionary taken = new Dictionary(); foreach (var classCount in group) { taken[classCount.Key] = (classCount.Count * trainingPercentage) / 100.0; } List training = GetListOfIListCopy(values); List test = GetListOfIListCopy(values); for (int i = 0; i < targetValues.Count; i++) { if (taken[(double)targetValues[i]] > 0) { AddRow(training, values, i); taken[(double)targetValues[i]]--; } else { AddRow(test, values, i); } } trainingPartEnd = training.First().Count; for (int i = 0; i < training.Count; i++) { for (int j = 0; j < test[i].Count; j++) { training[i].Add(test[i][j]); } } return training; } private void AddRow(List destination, List source, int index) { for (int i = 0; i < source.Count; i++) { destination[i].Add(source[i][index]); } } private List GetListOfIListCopy(List values) { List newList = new List(values.Count); foreach (IList t in values) { if (t is List) newList.Add(new List()); else if (t is List) newList.Add(new List()); else if (t is List) newList.Add(new List()); else throw new InvalidOperationException(); } return newList; } } }