#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Problems.Instances.DataAnalysis {
public class ClassificationCSVInstanceProvider : ClassificationInstanceProvider {
public override string Name {
get { return "CSV File"; }
}
public override string Description {
get {
return "";
}
}
public override Uri WebLink {
get { return new Uri("http://dev.heuristiclab.com/trac.fcgi/wiki/Documentation/FAQ#DataAnalysisImportFileFormat"); }
}
public override string ReferencePublication {
get { return ""; }
}
public override IEnumerable GetDataDescriptors() {
return new List();
}
public override IClassificationProblemData LoadData(IDataDescriptor descriptor) {
throw new NotImplementedException();
}
public override bool CanImportData {
get { return true; }
}
public override IClassificationProblemData ImportData(string path) {
TableFileParser csvFileParser = new TableFileParser();
csvFileParser.Parse(path, csvFileParser.AreColumnNamesInFirstLine(path));
Dataset dataset = new Dataset(csvFileParser.VariableNames, csvFileParser.Values);
string targetVar = dataset.DoubleVariables.Last();
// turn of input variables that are constant in the training partition
var allowedInputVars = new List();
var trainingIndizes = Enumerable.Range(0, (csvFileParser.Rows * 2) / 3);
if (trainingIndizes.Count() >= 2) {
foreach (var variableName in dataset.DoubleVariables) {
if (dataset.GetDoubleValues(variableName, trainingIndizes).Range() > 0 &&
variableName != targetVar)
allowedInputVars.Add(variableName);
}
} else {
allowedInputVars.AddRange(dataset.DoubleVariables.Where(x => !x.Equals(targetVar)));
}
ClassificationProblemData classificationData = new ClassificationProblemData(dataset, allowedInputVars, targetVar);
int trainingPartEnd = trainingIndizes.Last();
classificationData.TrainingPartition.Start = trainingIndizes.First();
classificationData.TrainingPartition.End = trainingPartEnd;
classificationData.TestPartition.Start = trainingPartEnd;
classificationData.TestPartition.End = csvFileParser.Rows;
classificationData.Name = Path.GetFileName(path);
return classificationData;
}
protected override IClassificationProblemData ImportData(string path, ClassificationImportType type, TableFileParser csvFileParser) {
int trainingPartEnd = (csvFileParser.Rows * type.TrainingPercentage) / 100;
List values = csvFileParser.Values;
if (type.Shuffle) {
values = Shuffle(values);
if (type.UniformlyDistributeClasses) {
values = Shuffle(values, csvFileParser.VariableNames.ToList().FindIndex(x => x.Equals(type.TargetVariable)),
type.TrainingPercentage, out trainingPartEnd);
}
}
Dataset dataset = new Dataset(csvFileParser.VariableNames, values);
// turn of input variables that are constant in the training partition
var allowedInputVars = new List();
var trainingIndizes = Enumerable.Range(0, trainingPartEnd);
if (trainingIndizes.Count() >= 2) {
foreach (var variableName in dataset.DoubleVariables) {
if (dataset.GetDoubleValues(variableName, trainingIndizes).Range() > 0 &&
variableName != type.TargetVariable)
allowedInputVars.Add(variableName);
}
} else {
allowedInputVars.AddRange(dataset.DoubleVariables.Where(x => !x.Equals(type.TargetVariable)));
}
ClassificationProblemData classificationData = new ClassificationProblemData(dataset, allowedInputVars, type.TargetVariable);
classificationData.TrainingPartition.Start = 0;
classificationData.TrainingPartition.End = trainingPartEnd;
classificationData.TestPartition.Start = trainingPartEnd;
classificationData.TestPartition.End = csvFileParser.Rows;
classificationData.Name = Path.GetFileName(path);
return classificationData;
}
protected List Shuffle(List values, int target, int trainingPercentage, out int trainingPartEnd) {
IList targetValues = values[target];
var group = targetValues.Cast().GroupBy(x => x).Select(g => new { Key = g.Key, Count = g.Count() }).ToList();
Dictionary taken = new Dictionary();
foreach (var classCount in group) {
taken[classCount.Key] = (classCount.Count * trainingPercentage) / 100.0;
}
List training = GetListOfIListCopy(values);
List test = GetListOfIListCopy(values);
for (int i = 0; i < targetValues.Count; i++) {
if (taken[(double)targetValues[i]] > 0) {
AddRow(training, values, i);
taken[(double)targetValues[i]]--;
} else {
AddRow(test, values, i);
}
}
trainingPartEnd = training.First().Count;
for (int i = 0; i < training.Count; i++) {
for (int j = 0; j < test[i].Count; j++) {
training[i].Add(test[i][j]);
}
}
return training;
}
private void AddRow(List destination, List source, int index) {
for (int i = 0; i < source.Count; i++) {
destination[i].Add(source[i][index]);
}
}
private List GetListOfIListCopy(List values) {
List newList = new List(values.Count);
foreach (IList t in values) {
if (t is List)
newList.Add(new List());
else if (t is List)
newList.Add(new List());
else if (t is List)
newList.Add(new List());
else
throw new InvalidOperationException();
}
return newList;
}
}
}